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Resumé

Metabolske netværk kan modelleres som hypergrafer, hvor enhver
hyperkant svarer til en reaktionstype for en given mængde af molekyler,
som alle reagerer med et bestemt enzym. Fælles for disse molekyler i
en given reaktion er, at de alle har en fælles mængde bindinger, som
ændrer sig undervejs i reaktionen - i denne sammenhæng kaldt et anker.
Et molekyle i sig selv kan repræsenteres som en uorienteret graf med
dekorerede kanter og knuder. En reaktion af et molekyle kan derfor ses
som en graftransformation, som er resultatet af en anvendt graftrans-
formationsregel. Venstresiden af disse graftransformationsregler svarer
da til reaktantsiden, og højresiden svarer til produktsiden. Ændringen
mellem vesntre- og højresiden i s̊adanne regler kendes som ankeret, som
er fælles for alle molekylerne i den givne reaktion - at udvidde dette
anker svarer da til at løse største fælles delgraf-problemet. I denne
rapport beskriver og implementerer vi to forskellige algoritmer, som
kan løse største fælles delgraf-problemet, og diskuterer deres anven-
delse p̊a udviddelsen af ankeret. Den første algoritme er præsenteret
af J. McGregor, som benytter en søgetræsmetode til at bygge en fælles
delgraf op mellem to grafer. Den anden algoritme er formuleret af A.
Davoodi, som benytter sig af linjegrafer, produktgrafer og kliker til at
finde alle maksimale delgrafer blandt en mængde af grafer. Det viser
sig, at McGregors metode ikke overføres særligt nemt til udviddelsen af
ankeret, fordi det ikke er alle maksimale løsninger, der findes, hvilket
giver problemer n̊ar der er mere end to molekylegrafer. Til gengæld
viser klikemetoden sig at have god virkning p̊a tre til fire grafer, men
at den for nogle input stadigvæk har udfordringer, og vi præsenterer
mulige forbedringer, som kan afhjælpe dette.

3



Abstract

Metabolic networks can be modelled as hypergraphs in which every
hyper edge corresponds to a reaction type. Each reaction type consists
of a given set of molecules, all of which react with a specific enzyme.
All molecules in a given reaction share a common set of chemical bonds
that change during the reaction - this set of edges is denoted as the
anchor. A molecule in itself can be represented as a undirected graph
with decorated edges and vertices. A reaction of a molecule can thus be
seen as a graph transformation, namely the result of an applied graph
transformation rule. The left-hand side of these graph transformation
rules corresponds to the reactants and the right-hand side corresponds
to the products. The change between the reactants and products is
known as the anchor common to all molecules in a given reaction, and
extending this anchor is known as finding the maximum common an-
chor extension. In this thesis, we describe and implement two different
algorithms meant to solve the maximum common subgraph problem
and discuss their application on extending the anchor. The first algo-
rithm is described by J. McGregor which utilizes a backtracking search
tree approach to build a common subgraph of two graphs. The second
algorithm is described by A. Davoodi and utilizes line graphs, modular
products and cliques to find all maximal common subgraphs of a set of
graphs. It turns out that McGregor’s approach does not transfer well
to the problem of extending the anchor as not all maximal solutions
are found which is problematic when the input consists of more than
two molecule graphs. On the other hand, the clique method proves to
be usable on three and four graphs although some input graphs still
present issues. We discuss several optimization choices that might al-
leviate this.
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1 Introduction

Mathematical modelling of life sciences has seen an increase in interest dur-

ing the last half-century, especially in regard to computational biology and

biomedicine [FKW22]. Perhaps the most relatable one for most students

with experience in discrete mathematics will be the modeling of chemical

molecules, viewed as undirected graphs with decorations on the vertices and

edges. A reaction of molecules can be seen as a graph transformation. That

is, given a graph transformation rule (pattern), one can apply such a rule to a

molecule, rewriting parts of the molecule’s underlying graph which produces

a new molecule. A graph transformation rule is much like a reaction template

but requires an atom mapping from reactants to products and strict mass con-

servation. Conceptually this is similar to a generalisation of formal language

theory, where production rules rewrite parts of a graph. The graph trans-

formation formalism was utilized in the development of the software package

MØD [And+16].

Figure 1: An example of an overlay graph depicting reaction mechanisms. Red edges depict
bonds that a broken, green ones depict bonds that are created. If red overlays with green,
the bond is blue. On the other hand, if green overlaps with red, the bond is purple. For
detailed explanation of the reaction mechanisms, see [And+22].

In order to better illustrate the mechanisms used in graph transformation,

the term “overlay graph” was established in [And+22]. The overlay graph is

a colored “overlay” of the underlying, changing molecule and nicely illustrates
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the change of state (change of bonds) of the molecules during a mechanism

step. For an example of such a representation, see Fig. 1 from [And+22]. This

type of diagram will not be used in the scope of this thesis but is highlighted

to indicate the progress in mechanism modelling. On top of this, the idea

behind illustrating the change of state in molecules is similar to the idea behind

unioning the changing edges in the DPOs which we describe shortly.

Figure 2: An example of the extraction of a double pushout diagram from a reaction step.
The A-part shows an enzymatic reaction happening inside an enzymatic binding site. The
B -part shows the double pushout diagram, illustrating the transformation from educt to
product of the compound binding to the enzyme.

In recent years, modelling of metabolic networks - collections of enzymatic

reactions[Con23] - have been modelled as hypergraphs, each hyperedge cor-

responding to one reaction type with several molecules into their designated

products[AMR19]. That is, within metabolic networks, multiple graph trans-

formation rules are applied to many graphs simultaneously. Applications of

graph transformation rules can be modelled through the use of double pushout

diagrams (DPOs) see [HMP01]. An example of a DPO can be seen on the B-

part of Fig. 2 taken directly from [And+21]. The red edges in the DPO are

the edges that change throughout the reaction step, and the union of these
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edges compose the anchor. Given several of these DPOs for several molecules

that react in the same way with an enzyme, we wish to find the common

context of each of the molecules, namely the part of all molecules that must

be present in the enzymatic reaction. In Fig. 2, we see grayed out molecules

- amino acids - of the binding site and we know that these must always be

present. They are therefore trivially common and can be ignored. Instead, we

focus on the compounds reacting with the enzymes and find the connected ex-

tension of their known anchor. When viewing molecules as graphs, this raises

the computational question of finding the maximum common subgraph of all

molecules within a specific reaction type, some of which can contain more than

50 molecules. This sparks the purpose of this thesis. The maximum common

subgraph (MCS) problem is known to be NP-complete [GJ79] and the runtime

of any MCS algorithm is thus expected to increase exponentially as the size of

the input graphs increases. In this thesis, we will consider two approaches for

finding the maximum common subgraph extension of metabolic reactions. The

first one is a näıve approach developed by James J. McGregor in 1982 [McG82]

which utilizes a backtracking search tree methodology. The second approach

is based on clique finding in modular products [BB76]. Both approaches will

be implemented in Python3, and will be compared empirically. McGregor’s

approach will be used to illustrate the problem of finding a common subgraph,

but the main focus will be on presenting the modular product approach and

its usability in real life applications. As the very first thing, we introduce

the necessary graph theory to understand MCS (Sect. 2). The algorithmic

description immediately follows for McGregor (Sect. 3) and our own approach

(Sect. 4). Following the implementation details, we present the results of the

tests on both algorithms (Sect. 5) which is followed up by a discussion (Sect.

6) ended by a final conclusion (Sect. 7).
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2 Graph Theory

In this section, we present the relevant concepts from graph theory used in this

project, eventually introducing the heart of the matter, namely the maximum

common subgraph problem. The definitions and theorems are inspired by

[Wes+01].

2.1 Graphs

Definition 2.1 (undirected graph) An undirected graph G = (V,E) is a

2-tuple consisting of V , the set of vertices1 in G, and E, the set of edges

connecting the vertices in G. An edge e = uv ∈ E is an unordered vertex pair

for u, v ∈ V .

Note that in our examples, we will only consider simple undirected graphs,

i.e. graphs without loops (edges exiting and entering the same vertex) and

parallel edges (edges with the same endpoints). For an example of a simple

undirected graph, see Fig. 3.

If uv ∈ E, we say that u and v are connected or, equivalently, u is adjacent

to v. Note that for a directed graph, E consists of ordered pairs. (u, v) - such

graphs, however, will not be considered further in this project. An object

that we will consider, however, is the adjacency matrix for a given graph as

it provides useful information about the structure of a graph which will prove

beneficial in the algorithms that we present later in this project.

Definition 2.2 (adjacency matrix) Let G = (V,E) be a graph with n ver-

tices. The adjacency matrix, AG, is an n × n matrix. If ij ∈ E , we have

A(i, j) = 1, otherwise A(i, j) = 0 where A(i, j) denotes the i-th row and j-th

column in A.

A graph as defined above, even without additional information, is indeed a

powerful theoretical mathematical tool. However, for practical uses such as in

chemical modelling where nodes can represent atoms and edges can represent
1Vertices are also referred to as nodes or points and the terms are used interchangeably throughout this

text.
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covalent bonds, having the ability to “decorate” graphs can be quite useful.

For this purpose, we define labelled graphs.

Definition 2.3 (labelled graph) A labelled graph G = (V,E, lV , lE) is a 4-

tuple consisting of V , the set of vertices in G, E, the set of edges connecting

the vertices in G and two functions lV : V → L1 and lE : E → L2 that map

vertices and edges respectively to labels from the arbitrary label sets L1 and L2.

In graph theory, a labelled graph usually refers to a graph where node

labels are unique (e.g. numbers from 1, 2, 3 and so on). We will abuse the

notation of a labelled graph such that vertices/edges may share labels, i.e. lV

and lE are not injective functions. Additionally, unless lV and lE are specified,

one can safely assume that the graphs at hand are unlabelled. In this thesis,

figures will sometimes include indices on nodes and/or small letters on edges

for pedagogical purposes, but these do not necessarily correspond to labels in

this regard, see Fig. 3b.

(a)

v1 v2

v3 v4

(b)

Figure 3: (a) An example of an simple undirected graph, G, with four vertices and five
edges. (b) The same graph with pedagogical indices on the nodes.

These are the basic definitions of graphs used in this project. We will

later focus on finding edge correspondences between several graphs, and for

that we need to introduce the concept of line graphs, cliques and product

graphs. It will be clear how these graph structures can be useful tools for

finding edge correspondences once we establish the differences between vertex

induced common subgraphs and edge induced common subgraphs, both of

which will be described in detail later in this section.

Definition 2.4 (line graph) The line graph of a graph G = (V,E) is a graph

L(G) = (E,F ) where e1e2 ∈ F if and only if e1 = uv ∈ E and e2 = vw ∈ E
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share an endpoint v.

An example of a graph and its line graph is illustrated in Fig. 4. When

constructing the edges in L(G), one must look at incidence of edges in G.

Namely, if two edges e1, e2 ∈ E are incident - that is, e1 and e2 have one node

in common - the corresponding edge e1e2 exists in F of L(G).

432

1

0

ed

c

b

a

(a) G

a

b

c

d e

(b) L(G)

Figure 4: Example of a graph, G, and its corresponding line graph L(G). Notice how the
edges in G correspond to the nodes in L(G). Also consider the fact that node a in L(G) is
adjacent to node b and c in L(G) because edge a in G is incident to edges b and c in G.

Definition 2.5 (clique) A clique of size k in a graph G = (V,E) is a set

of k nodes {v1, v2, . . . , vk} ⊆ V such that vi is adjacent to vj, for every i, j;

1 ≤ i < j ≤ k.

Following the definition of a clique, we say that a graph G contains a k-

clique if there exists a subset of nodes S ⊆ V where |S| = k such that all

nodes in S are mutually adjacent. We say a clique is maximal if the clique

is not a proper subset of any other clique. As an example, observe that G in

Fig. 4a contains a 3-clique consisting of the nodes 0, 1 and 2.

Definition 2.6 (modular product graph) Considering two graphs

G = (V,E) and H = (V ′, E ′), the modular product of G and H denoted by

G×H consists of the vertex set V ×V ′. Two vertices (u, u′) and (v, v′) in the

modular product are adjacent if and only if the following two conditions hold:

1. u ̸= v ∧ u′ ̸= v′

2. uv ∈ E ∧ u′v′ ∈ E ′ or uv /∈ E ∧ u′v′ /∈ E ′.

12
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A

B

C

D

A,1 A,2 A,3

1 2 3

B,1 B,2 B,3

C,1 C,2 C,3

D,1 D,2 D,3

Figure 5: An example of a modular product graph, where the edge colors are purely ped-
agogical and not actual labels. Notice that edge (A, 1)(B, 2) is blue because A is adjacent
to B and 1 is adjacent to 2. Similarly, the edge (B, 1)(D, 3) is red because B and D are
non-adjacent, and the same goes for 1 and 3. Lastly, there is no edge (C, 1)(D, 3) because
C and D are adjacent, but 1 and 3 are not adjacent.

As is given by its name, the modular product graph contains a node for each

element in the cartesian product of the two vertex sets of G and H. We will

be using both modular product and product graph to refer to this construction.

To illustrate the meaning of condition 2 in Def. 2.6, we draw a blue edge

if the edge was introduced due to existing edges in both G and H. If the edge

was introduced due to non-existing edges in G and H, said edge will be colored

red - note that these colors are purely pedagogical and not actual labels. The

construction of a product graph is illustrated in Fig. 5. It is worth noting

that modular product graphs are not limited to only two graphs, but can be
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constructed from an arbitrary number of graphs as both conditions for edges

in the modular product can easily be extended to additional graphs.

2.2 Subgraphs and subgraph isomorphisms

Definition 2.7 (subgraph) A subgraph of a graph G = (V, E) is a graph

G′ = (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E and we then write G′ ⊆ G.

Definition 2.8 (node induced subgraph) A node induced subgraph of a

graph G = (V, E) is a subgraph G′ = (V ′, E ′) such that uv ∈ E ′ if and

only if u, v ∈ V ′ and uv ∈ E.

That is, if two vertices u, v from G are present in the subgraph G′ and u, v are

adjacent in G, then these vertices must also be adjacent in G′, see Fig. 6b.

Informally, a node induced subgraph selects vertices from V and then requires

that all edges connecting those vertices must also be included.

Definition 2.9 (edge induced subgraph) An edge induced subgraph of a

graph G = (V,E) is a subgraph G′ = (V ′, E ′) such that for any edge uv ∈ E ′,

we have u, v ∈ V ′.

For an edge induced subgraph the edges are selected from E and then by

extension the nodes incident on those edges are included in the subgraph, see

Fig. 6c.

4

2 3

0 1

(a)

4

2 3

(b)

4

2 3

0 1

(c)

Figure 6: An example of node induced subgraph (b) and edge induced subgrah (c) of a
graph (a).

Definition 2.10 (graph isomorphism) An isomorphism from a graph G =

(V, E) to a graph G′ = (V ′, E ′) is a bijection f : V → V ′ such that uv ∈ E if
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and only if f(u)f(v) ∈ E ′. We then say that G is isomorphic to G′ and denote

this formally by G ∼= G′.

For an example of a graph isomorphism, see Fig. 7.

0 1

2 3

(a) G

a b

c d

(b) H

Figure 7: An example of two isomorphic graphs defined by the function f when f(0) = a,
f(1) = b, f(2) = d and f(3) = c. Notice carefully how f(0) is adjacent to f(1) and f(2) as
is required by the isomorphism.

Definition 2.11 (common subgraph) A common subgraph of graphs G1

and G2 is a graph G′ such that G′ is isomorphic to a subgraph of G1 and

a subgraph of G2.

Informally, one might say that a common subgraph of two graphs G1 and

G2 is a graph G′ that is “included” in both G1 and G2. That is, you can “find

a structure” identical to G′ in both G1 and G2.

In relation to this project a maximal common subgraph is a common

subgraph whose vertex set is not a proper subset of the vertex set of another

common subgraph. One might also say that a maximal common subgraph is a

subgraph that cannot be extended any further. We then denote a maximum

common subgraph (MCS) as being the largest maximal common subgraph

of the two graphs. Based on Defs. 2.8 and 2.9 we talk about Maximum

Common Induced Subgraph (MCIS) and Maximum Common Edge

Subgraph (MCES) for node and edge induced subgraphs, respectively. See

Fig. 8 for examples of common subgraphs. In the application of chemical

anchor extensions we wish to find the MCES.

The decision problem of finding a common subgraph has been proven to be

NP-complete by a reduction from the clique finding problem, so no polynomial

algorithm for finding the maximum common subgraph exists unless P = NP.
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0 1

2 3

4

(a)

a b

c d

e

(b) (c) (d)

Figure 8: Two graphs (a) and (b) along with MCIS (c) and MCES (d). The colored nodes
highlight the considered isomorphism of the chosen subgraphs in (a) and (b). Note how the
MCES is larger than the MCIS as the MCIS cannot be extended due to the 3-cliques in (a)
that do not appear in (b).

Surprisingly, clique finding algorithms can assist in finding common induced

subgraphs as is evident by the following important theorem.

Theorem 2.1 Every clique in the modular product G1 ×G2 corresponds to a

common node induced subgraph of G1 and G2.

Before moving onto the proof, we want to outline a few necessary obser-

vations. Recall that the common node induced subgraph between two graphs

G1 = (V1, E1) and G2 = (V2, E2) is a graph G′ = (V ′, E ′) such that G′ is

isomorphic to a subgraph of G1 and a subgraph of G2. That is for two subsets

V ′
1 ⊆ V1 and V ′

2 ⊆ V2 there exist isomorphisms f : V ′
1 → V ′ and h : V ′

2 → V ′.

Since f and h are bijections, the inverses of f and h exist. The function h−1◦f
thus maps the subgraph of G1 to the subgraph of G2. This isomorpism can

easily be represented by pairs (u, v) meaning that u ∈ V1 is mapped to v ∈ V2.

Thus, the MCIS must be the subgraph isomorphism that maximizes this num-

ber of pairs. We then observe that the vertex set of the product graph G1×G2

consists only of such pairs. We now must show that (1) a clique in G1 × G2

can be used to construct a valid common node induced subgraph of G1 and

G2 and (2) that a node induced subgraph of G1 and G2 also corresponds to a

clique in G1 × G2. Note that it has previously been proven that cliques and

modular products can be used to find a common subgraph (e.g. see [BB76],

[Lev73]). Hence, we do not prove new knowledge. We instead present our take
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on a proof that, hopefully, provides an intuitive explanation of how a clique

in the modular product can be transformed into a subgraph isomorphism and

vice versa.

Proof

(1) Let C = {(u1, v1), (u2, v2), . . . , (uk, vk)} be an arbitrary clique of size

k in G1 × G2. Since there is no edge in a column or in a row of G1 × G2

(when referring to rows/columns, see Fig. 5), we have ui ̸= uj and vi ̸= vj,

for every i, j; 1 ≤ i < j ≤ k. i.e. all ui’s are different and the same goes for

all vj’s. Also, since C is a clique, every pair of vertices, (ui, vi), (uj, vj) ∈ C

are adjacent in G1 × G2 which, by Def. 2.6, means that ui and vi agree

on the adjacency with uj and vj, respectively. This intuitively means that

C defines a common subgraph. To make this intuition clear, we will define

the isomorphism precisely. To do this, let L = {u1, u2, . . . , uk} and S =

{v1, v2, . . . , vk}. We then define the bijection I : L → S such that I(ui) = vi.

This implies that I is a valid isomorphism between two subgraphs of G1 and

G2, not only because it is bijective, but also because it respects the adjacency

between nodes in V ′
1 and V ′

2 . This concludes the first part of the proof.

(2) Let G′ be a common node induced subgraph of G1 and G2. That is for

V ′
1 ⊆ V1 and V ′

2 ⊆ V2 there exists an isomorphism I ′ : V ′
1 → V ′

2 . We can easily

represent each I ′(u) = v as a pair (u, v) which corresponds to nodes in the

modular product G1 × G2. This means that I ′ implicitly defines a subset of

V (G1 × G2), let us call it T , where T = {(u, v) ∈ V (G1 × G2) | I ′(u) = v}.
It now suffices to show that every pair (u, v), (u′, v′) ∈ T are adjacent in

G1 × G2. Since (u, v), (u′, v′) ∈ T , we have I ′(u) = v and I ′(u′) = v′. As

I ′ is an isomorphism, we have either uu′ ∈ E(G1) ∧ vv′ ∈ E(G2) or uu′ /∈
E(G1) ∧ vv′ /∈ E(G2). By Def. 2.6, both cases result in (u, v) being adjacent

to (u′, v′) in G1 ×G2. This proves that T forms a clique in G1 ×G2.

□

Corollary 2.1.1 Every clique in the modular product L(G1) × L(G2) corre-

sponds to a common edge induced subgraph of the original graphs G1 and G2.
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Proof

This naturally follows from the fact that nodes in the line graphs correspond

to edges in the original graphs G1 and G2. The respect to adjacency of nodes

in the common subgraph of L(G1) and L(G2) implies a respect to incidence

between edges in the corresponding common subgraph of G1 and G2 which is

thus edge induced.

□

From this, we see that the MCIS can be found by finding the maximum

clique in the product graph. If one instead wishes to find the MCES of two

graphs G1 and G2, one should look for the maximum clique in L(G1)×L(G2).

The clique finding problem itself is NP-complete, so why bother with this?

The number of nodes and edges in a modular product graph clearly grows

drastically as the number of graphs increases. Fortunately, the area of clique

finding is very well studied (see [LP49], [MU04], [Pel09]). Because of this

there exists well established algorithms and tools for solving the clique finding

problem. Hence, our hope is that a proper clique finding algorithm will not be

the bottleneck when used on a modular product graph, especially if one can

limit the graph in such a way that the number of nodes to consider is not as

vast as feared. These observations will prove useful later on.
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3 McGregor’s backtracking algorithm

An algorithm for finding the MCES of two graphs, G = (VG, EG) and H =

(VH , EH), was presented by James J. McGregor in 1982 [McG82]. McGregor’s

algorithm uses a backtracking search tree approach, building up a solution by

trying all possible node correspondences whilst discarding search tree branches

that will not result in “better” common subgraphs. This search tree pruning

method is a common methodology used for exact algorithms on problems not

known to be solvable in polynomial time [MP11]. In this section, we will

describe the algorithmic approach of McGregor and subsequently discuss our

implementation and our need for customization of the algorithm. Results

gathered from tests of this implementation of McGregor’s algorithm will be

described in Sect. 5.1 and they will be discussed in Sect 6.1.

3.1 Algorithm

The basic version of McGregor’s algorithm works under the assumption that

|VG| ≤ |VH | and will only report a solution once all nodes in VG have been

mapped to unique nodes in VH . When mapping a node u ∈ VG to a node

v ∈ VH , the algorithm keeps track of possibly mapped edges between G and

H. That is, if u is tentatively mapped to v, only edges incident to u can

be mapped to incident edges of v. After each tentative mapping the current

state of the total mapping is saved in a workspace associated with the last

mapped node. This allows for backtracking in order to try a different mapping

at a later time in the execution of the algorithm. For each complete node

mapping, the algorithm reports said mapping as well as a set of possible edge

correspondences as a solution, taking note of the number of edges in EG that

have a possible mapping in EH (later known as arcsleft). The first found

solution, S, is naturally marked as the currently “best” solution. Following

this, the algorithm considers a different solution S ′ if and only if the number of

edges with a possible mapping in S ′ is strictly larger than the highest number

of mapped edges so far. This way, at most one mapping of each possible size

is reported by the algorithm. Now that an informal overview of the behavior

19



Maximum Common Subgraph

has been presented, we are ready to dig into the core of the algorithm.

The algorithm takes in two graphs as input. For simplicity’s sake, we now

denote the two input graphs as G1 = (V1, E1) and G2 = (V2, E2). The edge cor-

respondence resulting from the performed node correspondence is constructed

by a |E1|× |E2| matrix known as MARCS. Similar to an adjacency matrix of

a single graph, MARCS contains a 1 on position (r, s) for r ∈ E1 and s ∈ E2

if r can be mapped to s and a 0 otherwise. In the beginning (when no nodes

have been mapped yet), MARCS consists only of 1s as all edges in E1 can be

mapped to all edges in E2. When nodes are tentatively mapped, say u ∈ V1 is

mapped to v ∈ V2, MARCS must be adjusted accordingly such that it reflects

that edges incident to u can be mapped only to edges incident of v. This is

done by changing all (r, s) entries in MARCS to 0 when r is incident to u but

s is not incident to v. From this we see that if row i in MARCS is non-zero it

means that edge i ∈ E1 still has possible edge correspondences with edges of

E2. We let arcsleft denote the number of rows in MARCS that are not all
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MARCS

Figure 9: An example of the value of MARCS with arcsleft = 5 after a run of McGregor’s
algorithm on graphs (a) and (b). The colored edges of (a) and (b) highlight the mapped
edges in the resulting subgraph described by MARCS.

zero and decrement this value by 1 every time a row in MARCS has its last 1

removed due to an update after a tentative node correspondence. If arcsleft
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reaches 0, the mapping is not suitable as no edges can be mapped with the

given tentative node mapping and the algorithm backtracks. Similar to arc-

sleft, the algorithm keeps track of a variable bestarcsleft corresponding to the

highest arcsleft value discovered so far, starting off at 0. If a mapping of size

|V1| is reached, the current arcsleft is set as the new value of bestarcsleft and

the mapping is saved as a potential solution. After each refinement ofMARCS

based on a tentative mapping the arcsleft value is compared to bestarcsleft.

If arcsleft is smaller than or equal to bestarcsleft then the current branch

cannot be better than the current best mapping and backtracking kicks in to

kill this branch. The algorithm then continues execution from a previously

saved state. In the end, all found mappings along with their MARCS are

returned, where the largest mapping is the most relevant result. The behavior

of this algorithm has been expressed in pseudocode which is illustrated in Fig.

10. An example of a found result of the algorithm can be seen in Fig. 9.

Line 7 in the pseudocode ensures that node i in G1 is tentatively mapped

to all untried nodes in G2. “Untried nodes” refers to the nodes that i has not

been mapped to previously (and thus those branches have yet to be explored).

Additionally, the check for compatibility2 ensures that any to-be-tried nodes

in G2 have not already been mapped to a node in the current branch. The

purpose is to ensure that all branches in the search tree can be considered

for each node in G1. The backtracking, however, may kill certain branches

without trying some mappings, but it is already clear at that point that those

branches will not provide an optimal solution. The else statement starting at

line 21 is executed if there are no more untried nodes in G2 that node i can be

mapped to. This allows for the backtracking where the workspace associated

with node i− 1 is thus restored.

3.2 Implementation

The source code can be found in /src/mcgregor.py. The basic version of

McGregor’s algorithm has been implemented (albeit näıve) with additional

2Among other cases, which we discuss once we reach molecule graphs.
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Algorithm 1: McGregor’s algorithm for finding maximal common edge induced
subgraphs of two graphs.

Input : Two undirected graphs G1 and G2.
Output: Maximal Common Subgraphs of G1 and G2.

1 Initialize MARCS such that all entries are 1s;
2 arcsleft← |V1|;
3 bestarcesleft← 0;
4 i← 0;
5 mark all nodes of G2 as untried for node 0;
6 while i ≥ 0 do
7 if there is any untried nodes in G2 to which node i of G1 may correspond then
8 xi ← one of these untried nodes;
9 mark xi tried for node i;

10 refine MARCS on the basis of this tentative correspondence for node i;
11 if arcsleft > bestarcsleft then
12 if i = |V1| then
13 save mapping of nodes x0, x1, . . . , x|V1|−1, MARCS;
14 bestarcsleft← arcsleft;

15 else
16 store a copy of MARCS, arcsleft in the workspace associated to

node i;
17 i← i + 1;
18 mark all nodes of G2 as untried for node i;

19 end

20 end

21 else
22 i← i− 1;
23 restore MARCS, arcsleft from the workspace associated with node i;

24 end

25 end
26 return saved mappings and their associated MARCS ;

Figure 10: Pseudocode for McGregor. Note that 0-indexing has been used.

optional features. The library NetworkX’s([AS05]) Graph class is used for the

representation of the graphs. The algorithm has been implemented as a simple

tree traversal of the mappings between the input graphs G1 = (V1, E1) and

G2 = (V2, E2), each node in the search tree representing a sequence of tentative

mappings of nodes from V1 to V2. The root node consists of the null-mapping

where no vertices in G1 have been mapped yet. The i’th layer in the search

three thus consists of nodes where vertices 0, 1, . . . , i − 1 of G1 have received
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mappings to unique vertices in G2, the remaining nodes in G1 have yet to be

mapped. The MARCS matrix is initialized, and later refined, as described in

the previous section. For optimization purposes, we keep track of the number

of 1s in each row in a list of size |E1|, each cell to be decremented every time

MARCS is refined. To keep track of previous attempts at nodes in V2, a

boolean array is stored of size |V2| for each individual search tree node such

that if node i ∈ V1 is the next node to be mapped, it can instantly check

if node j ∈ V2 has already been tried. An identical array has been created

to check for already “occupied” nodes in V2. For workspaces, we created a

class called Workspace (in /src/Workspace.py). A workspace is associated

with every search tree node and is created whenever a new vertex mapping

has been established. The workspace contains attributes for MARCS, the

number of arcs left, the number of 1s left in each row of MARCS, and the

edges “killed” during the last refinement of MARCS. The value of the latter

ensures that when backtracking and a different node is selected in V2, MARCS

can be restored to its previous state3. This completes the description of the

more ambigous parts of the pseudocode. We now briefly describe the added

functionalities to the implementation with respect to the applications for rule

inference in chemical reactions.

3.2.1 Anchor

The function allows the user to pass anchored edges as an optional parameter.

The anchored edges are stored in a list of lists, where each inner list contains

two tuples. The first tuple is the edge in G1 and the second tuple is the edge

that it is mapped to in G2. MARCS is refined based on these anchored edges

as a preprocessing step, as this just needs to be done initially. This refinement

is done for each anchor individually, so if edge i from G1 is mapped to edge

j then row i and column j in MARCS is set to 0 except for the position

(i, j) which will stay as a 1 to indicate that this is a good edge mapping.

3Note that this set of “killed edges” is a result of the order of the implementation which, in this case, is
solely based on the order provided in the pseudocode. In theory, the non-refined MARCS could easily be
kept for the parent node before a new tentative mapping occurs. The refined MARCS could then be passed
down to the child node.
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Furthermore, it is necessary to ensure that edges that are incident to edge i

can only be mapped to edges incident to edge j. This is handled by setting

entries to 0 where edge uv is incident to edge i in G1 but u′v′ in G2 is not

incident to edge j.

3.2.2 Molecule graphs

Users can indicate labelling on the graphs via an optional boolean flag called

molecule, which defaults to false. When using molecule graphs there are labels

for both the vertices and the edges, where the vertices indicate atom type and

the edges have a bond type. The bond type can be used to refine MARCS

as a preprocessing step in a straightforward way where any entry (i, j) will

be set to 0 if the bond type of the two edges i and j are not the same. The

vertex labelling becomes a part of the compatibility condition for line 7 in the

pseudocode in Fig. 10. Vertex i from G1 can only be tentatively mapped to

vertex j in G2 if i and j are of the same atom type. In order to simplify the

code the algorithm acts as if labelling is always present, where we add empty

labels if the molecule flag is false. The current implementation refers to the

vertex labelling as “atom type” and the edge labelling as “bond type”. Note

that it would be rather straightforward to modify the implementation in such

a way that the user could pass other strings to use for the vertex and edge

labelling, respectively. Additionally, one could provide options to have several

attributes that should match on the vertices and/or edges. These have not

been implemented but the code would not need to be modified significantly to

allow for it.
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4 The LMC algorithm

A different approach to computing the maximum common subgraph of two

graphs G = (VG, EG) and H = (VH , EH) was suggested by G. Levi in 1973

[Lev73]. He proposed using a table, N , called the Node Correspondence Table,

that is, a table of size |VG| × |VH | where entry N(i, j) corresponds to the

mapping of node i ∈ VG to node j ∈ VH . In other words, N(i, j) = 1 if the

two nodes can be mapped to each other and 0 otherwise. Levi thus illustrates

the k common subgraph problem as finding a square subtable T of N with k

rows (called a k-cover), i.e. a set S of k non-zero cells, such that all rows and

columns of T include only one element from S. Such a k-cover corresponds

to a node mapping of k nodes of G to k nodes of H4. The constraint on the

k-cover’s columns and rows ensures that no two nodes from G are mapped to

the same nodes in H and vice versa. All that remains for a k-cover to be a

valid isomorphism is that it should respect adjacency between nodes of G and

H. The connection between finding a k-cover in N , finding a k-clique in G×H
and finding a common subgraph of k nodes should stand out at this point. As

previously mentioned, we aim our focus on finding a connected extension of

an already known “smaller” common edge induced subgraph between n nodes

called the anchor denoted by A. When an anchored common subgraph of

the input graphs is given, a potential algorithm for computing the extension is

immediately given a theoretical (even if small) advantage because, among other

aspects, the algorithm should not consider mappings of edges inside the anchor.

In this section, we will describe our suggestion for an algorithmic approach of

combining the anchor with the modular product to find a maximum common

anchor extension of a set of input graphs. The description of the algorithmic

approach will be followed by the implementation details. This algorithm will

be referred to as LMC5. The results for the tests of the implementation will

be presented in Sect. 5.2 and is followed by a discussion in Sect. 6.2.

4A common subgraph consisting of k nodes is called a common subgraph of order k in [Lev73].
5Linegraph-Modularproduct-Clique
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4.1 Algorithm

The näıve method for finding a common node induced subgraph of size k for

a sequence of input graphs G1, G2, . . . , Gn is to compute the modular product

G× = G1 × G2 × · · · × Gn and subsequently find a k-clique in G× which we

proved in Thm. 2.1. This approach does not guarantee that the resulting

subgraph is connected as one could consider a clique in the modular product

consisting of nodes connected only by red edges. For the purpose of finding

the extension of an anchor, this approach clearly does not work as desired for

numerous reasons:

i. The application of chemical context finding requires a connected, edge

induced extension of the anchor.

ii. Looking at arbitrary k-cliques in G× may or may not include the anchor

either entirely or in parts.

iii. The number of nodes and edges in G× creates an unwinnable fight for any

clique finding algorithm as n grows.

The problem of finding edge induced subgraphs as opposed to node induced

subgraphs is “easily” solved following Corollary 2.1.1. Because of this, we now

consider a graph LG× which is the product graph of the respective line graphs

of the input graphs. Nodes in LG× hence now correspond to edge mappings

in the input graphs. Note that the anchored nodes in LG× are of the type

(a1, a2, . . . , an) where a1 is an anchored edge in G1, a2 is an anchored edge in

G2 and so on.

A suitable algorithm must find only the cliques in LG× that result in a

connected extension of A and do this without having to consider nodes who a

priori are irrelevant. This is where A. Davoodi’s proposal (see [Dav23]) kicks

in. Given a set of graphs and an anchor as already described, the number of

nodes in LG× can be reduced significantly. Firstly, we discard all “conflicting

nodes”. For instance, we can easily exclude product graph nodes that contain

both anchored and non-anchored vertices as these clearly cannot agree on

whether they are anchored or not. As an example, suppose a node in the
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product graph is (e1, e2). If e1 is anchored in G1 and e2 is not anchored in

G2, then that product graph node is in a conflict with itself and can thus be

discarded. When also considering the direct application of context extension

in molecules, the number of conflicting nodes in LG× will be more vast. We

can consider molecules as decorated graphs with lV being a function mapping

nodes in the input graphs to atom types (e.g. C for carbon, O for oxygen, N

for nitrogen) and lE being a function that maps edges in the input graphs to

their bond type (e.g. single, double, aromatic). When converting the input

graphs to line graphs we recall that edges in the original graphs are transformed

into vertices. Let e = uv be such an edge in one of the input graphs. In the

corresponding line graph, we can now define lV (e) = (lE(e), {lV (u), lV (v)})
such that a vertex in a line graph is both identified by 1) the original bond type

it had and 2) the atom types of its two endpoints. Clearly, e cannot be mapped

to another edge e′ if lV (e) is not exactly equal to lV (e
′) on all parameters.

Because of this, we can exclude a “product node” v× = (v1, v2, . . . , vn) in LG×

if there exists two vertices vi, vj ∈ v× such that lV (vi) ̸= lV (vj), these two

vertices clearly do not agree on what kind of edges they should map to, so we

can leave them out. Lastly, we discard nodes if they do not match up with our

“expectation to connectivity” to the anchor. That is, we also discard a node

in LG× if it is not in the neighbourhood of all anchored nodes (both red and

blue edges count here). Lastly, we divide the set of nodes into so called blue

connected components. A blue connected component is just a subset of nodes

on a blue path to A. All nodes not on a blue path to A are therefore also

excluded. During this “polishing process” of LG×, the product graph will go

from a graph similar to the one in Fig. 11a to a smaller graph similar to the

graph shown in Fig. 11b.
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A

(a)

A

(b)

Figure 11: An illustration of the removal of connected components not connected to the
anchor by blue edges. Conflicting nodes have been removed prior to step a). The anchor
is depicted as a collection of anchored vertices, that is, an edge entering the anchor could
be entering any anchor node. Furthermore, each of the nodes needs to be connected to all
anchor nodes in A, these extra edges have not been drawn to avoid cluttering the figure.

Now that we have limited the number of nodes in LG×, it is time to dig

into how cliques in the product graph are transformed into extensions of the

anchor. The idea is as follows: Given LG× now consisting only of the anchor
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and the blue connected components, we want to find all maximal cliques in

the graph. For each clique, we discard all nodes not connected to the anchor

via a blue path in the graph induced by the anchor and this clique. The

remaining nodes and the anchor then result in the given extension. Such an

extension is illustrated in Fig. 12. On the figure, one should observe that if

all the gray edges are red, only the green nodes are reported as an extension

of the anchor which means that the same extension is reported twice for two

separate cliques. Because of this, one must also filter away isomorphic anchor

extensions when considering the final result. Pseudocode describing the entire

procedure of creating the product graph and finding cliques is found in Figs.

13 and 14.

v

u

A

Figure 12: An example two cliques in LG×. One clique consists of all green nodes and the
node u, another consists of all green nodes and the node v. Gray edges could be of any
color. If all gray edges are red, only the green nodes are reported as an extension of the
anchor as u will be discarded when unioned with the green vertices, and the same would
happen to v. If at least one of the gray edges to, say, u is blue, u will have a blue path
to the anchor when unioned with green vertices, and the union of u and the green vertices
would therefore be reported as an extension.

Now, this procedure clearly works for an arbitrary number of graphs as one

can compute L(G1)×L(G2)×· · ·×L(Gn) for any positive value of n. However,

despite the filtering of nodes in LG×, our hypothesis is that the number of
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nodes and edges still grows to an unworkable number if one computes a product

graph for a large number of graphs, the number of cliques in the product graph

will thus naturally also increase.

Algorithm 2: Our algorithm for finding all maximal common edge induced sub-
graphs of two graphs.

Input : A set of n undirected graphs, L. A set of anchored edges, AE .
Output: All maximal common subgraph extensions of all members L w.r.t AE .

1 LLG ← {LG(G) | G ∈ L};
2 LG× ← L1 × L2 × · · · × Ln for Li ∈ LLG ; // possible size limitation

3 N ←
⋂

x∈A

NLG×(x);

4 B ← {v | v ∈ V (LG×) and v is not reachable from A via blue edges} ; // BFS

5 N ← N \B;
6 if |N | = 0 then
7 return AE as MCES;
8 end
9 MCSs← connected MCS(LG×, AE , N);

10 return MCSs;

Figure 13: The pseudocode for the algorithm LMC MCS

Algorithm 3: The algorithm for finding the anchor extensions based on the blue
neighbourhood of the anchor.

Input : A modular product graph, PG. A set of anchored vertices in PG, A.
The “blue” neighbourhood of A, Nb.

Output: All maximal extensions of A.
1 XA ← {};
2 BG← the graph induced by A and all nodes of Nb in PG;
3 C ← {c | c is a maximal clique in BG};
4 foreach c ∈ C do
5 Gc ← the graph induced by AE and c;
6 X ← {v | v ∈ C is reachable from A via blue edges in EGc

} ; // BFS

7 if |X| ≠ 0 then
8 XA ← XA ∪ {A ∪X};
9 end

10 end
11 return XA;

Figure 14: The pseudocode for the algorithm connected MCS

To minimize the product graph and the amount of work needed to han-
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dle the product graph and cliques, we consider an iterative approach for

finding the global maximum common anchor extension. Given input graphs

G1, G2, . . . , Gn and the anchored edges in these graphs, the iterative approach

first computes all maximal anchor extensions of G1 and G2. For every maximal

extension m, we consider the maximal extension of Gm (m seen as the graph

induced by m in G1) and G3 and so forth until we reach Gn. The resulting

maximal extensions with Gn are thus the global common maximal extensions

of the anchor. From these we can easily find the maximum (if needed be).

The reason why we pursue all maximal extensions instead of only the largest

maximal extensions is because we would run into the same issue that impacted

McGregor’s algorithm which will be discussed in Sect. 6.1.2. The iterative ap-

proach is described in pseudocode in Figs. 15 and 16. We will primarily focus

on this iterative approach in our discussion but will also put it in perspective

to using the method of computing the product graph for all input graphs (we

will refer to this method as all product approach). Now, however, we move

onto to the implementation part of the presented algorithms.

Algorithm 4: The algorithm for the iterative approach of finding the maximal
common anchor extensions for a set of graphs.

Input : A set of graphs L = {G1, G2, . . . , Gn}. A set of anchored edges, AE .
Output: All maximal common extensions of AE of the graphs in L.

1 EXT ← {};
2 L′ ← L \ {G1, G2};
3 iterative aux(G1, G2, L

′, AE , EXT );
4 return EXT ;

Figure 15: The pseudocode for the algorithm iterative MCS, namely the algorithm who’s
purpose is to utilize LMC MCS in a step-by-step fashion.

4.2 Implementation

The source code can be found in /src/cliques.py with auxiliary libraries be-

ing /src/productgraph.py and /src/linegraph.py. The remaining libraries

not mentioned here or in Sect. 3.2 are libraries meant to ease creation of input

or visualize results and will therefore not be covered. The function that im-
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Algorithm 5: The auxiliary algorithm for the iterative approach of finding the
maximal common anchor extensions for a set of graphs.

Input : Two graphs, Gi, Gi+1. A set of remaining graphs
L = {Gi+2, Gi+3, . . . , Gn}. A set of anchored edges, AE . The set of
current found anchor extensions.

Output: Extends EXT whenever a new anchor extension is found.
1 R← LMC MCS({Gi, Gi+1}, AE);
2 foreach r ∈ R do
3 if |r| > |AE | then
4 if L = ∅ ∧ ¬∃m ∈ EXT : r ∼= m then // all graphs reached in this

branch

5 EXT ← EXT ∪ r;
6 end
7 else
8 G′ ← the graph induced by r in Gi;
9 L′ ← L \ {Gi+2};

10 iterative aux(G′, Gi+2, L
′, AE , EXT );

11 end

12 end

13 end

Figure 16: The pseudocode for the algorithm iterative aux meant to control the recursive
step in iterative MCS.

plements the algorithm in Fig. 13 is called mcs list leviBarrowBurstall6.

The function takes four parameters:

• L: A list of n graphs.

• edge anchor: A list of anchored edges in all graphs. (see documentation

for details on structure)

• limit pg: A boolean variable indicating whether the product graph should

be limited to the neighbourhood of anchors or not. Defaults to true.

• molecule: A boolean variable indicating whether the product graph has

molecule labelling, i.e. atom type for the nodes and bond type for the

edges. Defaults to false.

6The naming comes from G. Levi, H.G. Barrow and R.M. Burstall (see [BB76]) who all released articles
on subgraph isomorphisms, product graphs and maximal cliques.
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The algorithm has been implemented more or less in the order of the lines

in the pseudocode, using NetworkX’s Graph class to control the structure of

graphs. The graphs are initially transformed into line graphs using the al-

gorithm that follows from Def. 2.4, keeping in mind that the edge anchors

should be transformed into vertex anchors in the line graphs (i.e. if e ∈ G(E)

is an anchored edge in G, then e ∈ V (L(G)) is an anchored node in L(G)).

The product graph is then computed using itertools’s function for cartesian

product on the vertex sets of the graphs in L, constraining the number of

nodes and edges depending on the values of limit pg and molecule - edges

are colored either red and blue to follow Def. 2.6. From there, the blue con-

nected components are found using a simple breadth-first search7 from the

anchor, using only blue edges for traversal. The set R denotes all marked

nodes found during this search. To find individual components, we extract

a random node, v ∈ R, find the set of nodes, S, reachable by a blue path

from v and denote {v} ∪ S as a blue connected component. For every blue

connected component found, we subtract its vertex set from R and continue

until R is empty. Once all blue connected components are found, the function

connected MCS which is implemented based on the pseudocode in Fig. 14 is

called on the anchor and these blue connected components. connected MCS

utilizes the NetworkX function find cliques to find all maximal cliques8 and

then uses another breadth-first search to exclude nodes that are not reachable

from the anchor via blue edges. The anchor extensions are reported as already

discussed.

The mcs list leviBarrowBurstall function takes an arbitrary number of

graphs as input which makes it easy to use as a tool for the iterative approach

which only takes on two graphs at a time - this is what we did. The function

iterative approach is implemented based on the pseudocode in Fig. 15. Its

auxiliary function based in Fig. 16. iterative approach initializes an empty

list of mappings and calls iterative approach aux with the first two input

graphs and this list as input, which in turn calls itself recursively on the found

7Using Python’s own queue library.
8We could have spent time implementing our own clique-finding algorithm, but we would have no guar-

antee that it would be optimal in any way and it could thus possibly interfere with our results later on.
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unique9 maximal extensions and the next input graph in line, building up an

anchor extension throughout. Whenever a branch reaches an extension the

size of the anchor (i.e. it is exactly the anchor), the branch terminates. This

is due to the fact that all built extensions converge towards global common

maximum extensions - such a global maximum cannot grow after the maximal

extensions have been found for the first two input graphs G1 and G2 because

if a maximum extension is common for all the input graphs, it must also be

common in G1 and G2 and cannot “grow” afterwards! Whenever all input

graphs have been processed, the currently built anchor extension is added to

the initial list of mappings. If no anchor extensions were found at all, the

anchor extension itself will be the maximal common anchor extension (i.e. the

extension is of size 0).

9That is, all maximal extensions are checked up for isomorphism using the NetworkX is isomorphic

function, such that only one extension per isomorphism class is recursed on.
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5 Results

In this section, we present the results of testing McGregor’s algorithm and the

LMC algorithm on various input graphs.

5.1 Testing McGregor’s algorithm

The implementation of McGregor’s algorithm has been tested on several smaller

instances where (|V1|, |V2|) ∈ {(5, 10), (5, 20), (10, 10)} with a timeout limit of

10 minutes. An overview of the results can be seen in Figs. 17, 18 and 19.

The description of the input graphs are given on each figure. Note that on all

figures, the presented results are shown in an arbitrary order - that is, there is

no connection between traversing along the x -axis and the number of edges in

the given input graphs. For more detailed results, we refer the reader to Appx.

A where tables containing the complete results can be found. We also tested

the implementation of McGregor on our randomly generated graphs in Appx.

B (details on these can be found in Sect. 5.2.1). These unlabelled graphs have

a cyclic anchor which means that there is no ambiguity within the mapping

of edges, see Sect. 6.1.1 for details on this problem. This is due to the fact

that ambiguity in McGregor’s algorithm only occurs when, if you observe the

anchor as a subgraph, the anchor is a tree - (the ambiguity is visible in leaf

nodes, not in internal ones) and cyclic anchors are not trees. Results from

these tests can be seen in Table 1.

Graphs Without anchor time(s) With anchor time(s)
0 1 10.88908 0.05719
0 1 2 11.51020 0.05599
0 1 2 3 16.39181 0.11060
0 1 2 3 4 18.30438 0.11020

Table 1: The runtime of McGregor’s algorithm with unlabelled graphs, both with and
without anchored edges.

We want to emphasize that illustrating a clear (or perhaps just reasonable)

connection between graphs of varying sizes and the resulting runtime of the

algorithm has been difficult. We have not included instances where |V1| > 10
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and |V2| > 20 because, as it turns out, the algorithm simply does not terminate

within 10 minutes for most graphs of these sizes. Based on this, and the fact

that McGregor’s algorithm does not find all maximal common edge induced

subgraphs, we did not deem it relevant to test on much larger (or decorated

for that matter) graphs. We will elaborate on the details of this in Sect. 6.1.
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5.2 Testing the LMC algorithm

For the LMC algorithm, we have chosen two different (labelled, unlabelled

graphs) test suites for the iterative approach and did a single test of the

all product approach with unlabelled input graphs. The reason for only doing

a single test of the all product approach should become clear from the test

and subsequent discussion. Lastly, we have performed and illustrative test for

the connection between size of the product graph and the number of cliques

for one of the labelled graphs.

5.2.1 Unlabelled graphs

The unlabelled graphs are “randomly” generated with a limited size both in

terms of nodes (8 to 10 nodes) and edges (15 to 18 edges). Visualization

of these graphs can be found in Appx. B, though a single example can be

found in Fig. 20. Anchors have been chosen in the graphs by visual inspection

and are highlighted in pink. The tests performed on these graphs are primarily

meant to highlight the impact of the chosen sequence of the graphs given to the

iterative approach, e.g. [G1, G2, G3] or [G2, G3, G1]. Fig. 21 shows the runtime

for all the possible sequences including of 2, 3, 4, and 5 graphs, respectively.

Lastly, the all product approach with all 5 graphs did not terminate within an
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hour and the test computer ran out of memory.
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Figure 20: An example of one of the unlabelled input graphs (Graph 2) used in the test.
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5.2.2 Labelled graphs

The labelled graphs have been provided by Daniel Merkle. These graphs have

been extracted from DPOs and model molecules. As DPOs include both educt

(G) and product (H ) molecules, the graphs used in these tests correspond to

the G and H molecules “stacked on top” of each other, such that anchor edges

in both G and H are included in the final graphs - note again that the anchor

edges are the edges that change type (e.g. from not existing to becoming
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Figure 22: An illustration of how anchored edges are discovered between graphs G and H.
The blue edge in G becomes a pink edge in H. The green edge does not exist in G but
appears in H. Therefore, both edges (the violet edge illustrates the mix of blue and pink)
are included in the input graph.

a single bond or from a single bond to a double bond) during the reaction.

Because of this, only information regarding the change in the bond type for

the anchor edges between G and H of the DPO must be maintained (see Fig.

22 for an example of the configuration of the input graphs).

Since these graphs model molecules they have both node labels (atom type)

and edge labels (bond type). For the input given, the anchor edges for each

graph are included. However, in its current form, it is not possible to directly

infer the exact mapping between anchored edges in Gi and anchored edges in

Gj. Because of this, all possible anchor edge-mappings have been calculated

(see /src/graph format.py)10. From these anchors, we chose the first one as

it generally seemed like a good one (though not the best for all graphs as the

MCS was not found for all graphs with this mapping). Furthermore, a “good”

sequence of graphs given to the algorithm has been chosen. For an example of

a “good” sequence, consider the sequence 0, 2, 1, 3 for Fructose Bisphosphatase

seen in Appx. D. Table 20 shows a runtime of ≈ 0.14 seconds while a different

test (not presented here) showed that the sequence 0, 1, 2, 3 has a runtime of

10It has been discussed that the anchor mapping would later be possible to infer given the reaction
patterns, but this has not been developed yet.
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≈ 385 seconds which is a remarkable difference.

Because we did not expect to see anchor extensions of more than 5-10

edges, we decided to “shrink” the input graphs based on the distance from the

anchor nodes in a breadth-first search. For each test instance, we started of

by removing all edges further than one edge away from the anchor, two edges

away from the anchor and so on up until nine edges in all of the input graphs.

It is important to note that the result from each iteration is not used in the

next, however, this is something we will discuss in Sect. 6.2.2. All test results

can be found in Appx. D, but an excerpt of these can be found in Figs. 23,

24 and 25. On each figure, the left diagram shows the change in number of

extensions found as we allow more and more edges to appear in each graph.

The right diagram shows the change in run time. The tests were run for 30

minutes after which they would timeout if not finished. Extension diagrams

does not include results for instances that timed out. For visualization of a

found extension, see Appx. E in which AHACHB’s solution is shown.
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Aconitase Half-reaction A Citrate Hydro-lyase Backward (AHACHB)
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5.2.3 Glucose Dehydrogenase Forward clique experiment

As mentioned, we have performed a test on one of the labelled graphs to show

the difference between distance from the anchor and the number of cliques

found as well as the runtime of this. We decided to perform the test on one
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Figure 26

of the graphs with a challenging runtime, the chosen one being Glucose-6

Phosphate Dehydrogenase Forward. The results from these tests can be seen

in Tables 2 and 3. An excerpt of the data set is illustrated in Fig. 26.

Tables 2 and 3 show how the product graph increases in size and the number

of cliques found in the product graph as the max distance grows. The cliques

are the ones found in the blue connected components. The time for both

the creation of the product graph and how long it takes to find the cliques

among the blue connected components is listed. Additionally, the table lists

the average time it takes for the algorithm to perform BFS on 500 cliques.

Entries with a dash indicate that the chosen distance did not finish execution

within a reasonable time.
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Distance PG nodes PG edges PG creation (s) Cliques Find Cliques (s) BFS per 500
Cliques (s)

5 252 20465 0.094 2896 0.078 2.5
6 289 33373 0.156 26624 1.043 3
7 291 33931 0.156 33792 1.262 3
8 300 36534 0.172 71424 2.406 4
9 306 38278 0.172 170176 5.851 3.4
infinity 862 330316 1.516 - - -

Table 2: Glucose-6 Phosphate Dehydrogenase Forward (Graph 0 and 3 from Table 34 as
the first two graphs)

Distance PG nodes PG edges PG creation (s) Cliques Find Cliques (s) BFS per 500
Cliques (s)

5 210 17254 0.078 5068 0.141 3
6 265 27862 0.156 46592 1.812 3.7
7 266 28119 0.141 59136 2.182 3.2
8 271 29445 0.156 124992 3.975 3.5
9 276 30770 0.141 311808 10.013 4
infinity 804 285883 1.266 - - -

Table 3: Glucose-6 Phosphate Dehydrogenase Forward (Graph 1 and 2 from Table 34 as
the first two graphs)

6 Discussion

We begin this section with a discussion of the results obtained from the tests of

McGregor’s algorithm, followed by a similar discussion of the LMC algorithm.

Lastly, we will discuss the two algorithms in relation to each other.

6.1 Discussion of McGregor implementation

As can be seen in Figs. 17, 19, and 18 from Sect. 5.1 and the Tables 4 and

5 from Appx. A, it is clear that when both G1 and G2 become larger, the

runtime increases exponentially. The tables show that the runtime increases

(on non-anchored input) from less than a millisecond for some graphs with 5

nodes to in the worst case timing out after 600 seconds for graphs with 10

nodes. This implies that the runtime is highly dependent on the number of

nodes in the two graphs given to McGregor’s algorithm, which was expected.

On the other hand, based on the referenced tables and the figures in Sect.
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5.1, it can also be seen that the effect that the number of edges in each graph

has on the runtime is not clear. As an example from Table 5, a run of the

algorithm on two graphs with respectively 25 and 19 edges has a runtime of

≈ 105 seconds while an instance of two graphs with 24 and 28 edges has a

runtime of ≈ 9 seconds. From this it appears that the structure of the two

graphs may have a much higher influence on the runtime than simply the

number of edges. Furthermore, the order in which the search tree is created

for a specific instance can have a significant impact. If a “good” solution is

found in the first branch it can help to skip most of the remaining branches,

whereas if a “good” solution is not found until late in the execution a lot

of “bad” branches will be explored. The current implementation does not

do anything to try and force good solutions early on so it stands to reason

that it will have an important impact on the runtime. J. McGregor proposes

optimizations to find “good” branches quicker in [McG82].

As Tables 6, 7, 8, and 9 from Appx. A clearly show, the graph with the

smallest vertex set must be very small in order for the runtime of McGregor’s

algorithm to be reasonable. For instances when at least one of the input

graphs has 5 nodes, the runtime stays somewhat “reasonable”. One might

argue that a graph of 10 nodes is still small, but the instances with 10 and 20

nodes did not stop within the timeout limit of 10 minutes, once again clearly

demonstrating the exponential increase in runtime as both graphs grow. In

the results we also see that the size of the second input graph has an impact on

the runtime. It does, however, depend on the graph instances, as the fastest

of the instances with 5 and 20 nodes (≈ 0.01 seconds) is still significantly

faster than the slowest instance with 5 and 10 nodes (≈ 0.28 seconds). This

illustrates the issues with giving a good analysis of the runtime as a function

of the size of the input graphs.

When considering the search tree to traverse, we know that increasing the

size of G2 (the larger graph) widens the search tree, as each node from G1 have

more possibilities in each branch of the tree. However, when increasing the

size of G1 the search tree becomes deeper instead. This results in a potential

increase in the number of needed computations, which supports the markedly
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larger increase in runtime when the smaller of the two graphs become larger

compared to increasing the size of the larger graph. As an example, suppose

that G1 has 5 nodes and G2 has 10 nodes. The number of possible decisions

is 10 · 9 · 8 · 7 · 6 = 30240. If G2 gains an additional node, the number of

possible decisions is 11 · 10 · 9 · 8 · 7 = 55440. On the other hand, if G1 was

the graph that gained an additional node, the number of possible decisions

would be 10 · 9 · 8 · 7 · 6 · 5 = 151200 which is five times the original number

of decisions! This increase in the number of decisions is clearly dependent on

the difference between the number of nodes in the two graphs. If G1 only had

one less node than G2 the impact would be significantly lessened. Increasing

the number of nodes in the smaller graph (which determines the depth) can

thus be much more devastating compared to increasing the number of nodes

in the larger graph (which determines the width).

6.1.1 Potential issues with anchored edges

In Sect. 3.2.1 one of the optional parameters described is the anchor, which

allows the user to specify edge mappings that are already known before the

execution of the code. We only present results on anchored graphs where the

anchor is cyclic. If the anchor is not cyclic, we run into ambiguity issues of

the result in MARCS. The reasons for this can be found in the ambiguity

introduced by the interaction between the node mapping of McGregor’s algo-

rithm and the edge mapping of the anchor. Given two graphs G1 = (V1, E1)

and G2 = (V2, E2) and an anchor mapping [[e1, e2]] with e1 = uv ∈ E1 and

e2 = u′v′ ∈ E2 it is not specified whether u is mapped to u′ or v′ and because

of this there can be situations where a later discovered edge mapping may

potentially not be able to discern the exact edge mapping. The problem is

illustrated in Fig. 27.

The resulting MARCS would potentially force the user to decide the exact

mapping after the execution of the code, if anchored edges were given as input.

For the reasons explained before, this is not an issue when the edge anchor is

a cycle11 as there would be only one way to map the nodes from the anchored
11The reader should convince themselves that this is the case when the direct mapping of edges is given.
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Figure 27: Illustration of the issue with anchors in the implementation of McGregor’s algo-
rithm. Mapping edge a from G1 to edge f in G2 does not specify whether node 0 in G1 is
mapped to node 3 or node 4 in G2 and likewise for node 1 in G1. Because of this in the
MARCS matrix returned from the implementation rows 1 and 2 indicates that edges b and
c from G1 can both be mapped either to edge d or e in G2.

edges in G1 to the nodes in G2. The anchors in the graphs from Appx. B

that were used to create Table 1 consists of cycles. For the graphs in Fig.

27 it would not be a big problem for the user to decide the exact mapping,

but with larger graphs it could be very difficult to handle. Based on this we

have concluded that anchored edges cannot be guaranteed to work properly

with the current implementation of McGregor’s algorithm. However, there are

several possible modifications that could work around or solve the problem.

When discovering ambiguity as in Fig. 27 the algorithm could return two

results, one with MARCS such that positions (1, 3) and (2, 4) have been set

to zero and the other where positions (1, 4) and (2, 3) have been set to zero.

Another more complicated solutions would be determining the node mapping

from the edge anchor i.e., if e1 = uv and e2 = u′v′ then u is mapped to u′

and v is mapped to v′. This would put a lot of responsibility on the user and

make the creation of the edge anchors more difficult. Another way to handle

it would be taking a node mapping instead of the current edge mapping as

the anchor. The reason that this has not been done instead is to be consistent

with the input for the LMC algorithm.
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6.1.2 Problems with labelled graphs

When dealing with unlabelled graphs McGregor’s algorithm can easily be ex-

tended to work on more than two graphs, as can be seen from the result of

Table 1. This is done by executing the code withG1 andG2 first and the result-

ing subgraph G′, which can easily be constructed based on G1 and MARCS,

would be input along with G3 for the second execution of the algorithm. It

simply requires an additional execution of the algorithm for each graph after

the first two. This works when the graphs are not decorated with node and/or

edge labels as only the structure of edges and nodes must be present in all

graphs and is not constrained by their attributes. However, it is not possible

to use the current implementation for more than two decorated graphs. The

problem is illustrated in Fig. 28 where the MCS of all three graphs cannot be

found when finding the MCS of G1 and G2 first. This is because McGregor’s

algorithm finds the maximum common subgraph, instead of finding all maxi-

mal common subgraphs, which would be necessary to eliminate the described

issue. We want to emphasize that it is not a simple task to gather maximal

common subraphs instead of the maximum common subgraph with the current

implementation of the algorithm. This is in large part due to the backtracking

that is used in the algorithm to discard as many branches as possible, and

by doing so it discards many of the maximal extensions. It would make the

algorithm nonfunctional if the backtracking was removed as it would result

in the algorithm going through all branches in the search tree, and it would

result in a runtime that would make the program unusable.

The combinations of the inconsistencies with the edge anchors and the

issues with more than two decorated graphs means that the implementation

of McGregor’s algorithm is not usable in the application of finding MCS in

molecule graphs in order to discover context for graph transformation rules.

6.2 Discussion of the LMC implementation

As mentioned in Sect. 5.2.1 the all product approach did not complete its

execution within an hour, even with only five “relatively” small graphs (8 to
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Figure 28: Parallel edges in G2 and G3 correspond to one edge, but two different mappings.
By first running McGregor’s algorithm on G1 and G2 the MCES would be the green edges.
Unfortunately, the resulting MCES would only have three nodes and 2 edges in common
with G3 namely the green B −C −B edges, whereas the MCES for all three graphs would
be the red edges in all three graphs.
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10 nodes, and 15 to 18 edges). The primary reason for this excessive runtime is

the size of the product graph created from all five test graphs and the number

of cliques found in the product graph. This problem becomes worse as the

graphs grow, both in size and in the number of graphs. Because of this, we

did not test the all product approach on the labelled graphs as they are on

average a lot larger than the tested unlabelled graphs. This implies that, even

if the number of nodes in the product graph could be reduced due to conflicting

nodes etc., the product graph would get too large and would result in a never

ending computation when finding cliques. Therefore, we will not consider the

all product approach any further. Instead, we move on to the discussion of

the results from testing the iterative approach.

6.2.1 Sequence of unlabelled graphs

First we bring up the peculiarities of Fig. 21 which illustrates the tests on the

unlabelled graphs. As is evident by the diagram, there is a huge difference

between the runtime within almost every class of unlabelled graphs, each class

representing the number of graphs to consider. The runtime clearly depends

on the sequence of the input graphs. Common for all classes is that all outliers

include Graph 0 and 1 as the first two graphs whose maximal anchor extensions

must be branched out on. On the other hand, the fastest runtimes were

achieved when Graph 1 and 3 were the first ones. It is not obvious what the

exact reason is for this outcome, but it turns out that the issue persists for

labelled graphs as well. This sparked the motivation for the test described in

Sect. 5.2.3 and this will be discussed in the following section.

6.2.2 Enzymatic reaction graphs

As can be seen on Table 2 and 3 in Sect. 5.2.3, it is clear that creating the

product graph itself does not take a long time. Even creating the product graph

when the input graphs are not limited does not take more than 2 seconds.

However, finding cliques in this product graph does not complete within a

reasonable time frame. This is supported by the growth in the number of
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cliques and the time it takes to compute them as the product graph increases

in size. For Graph 0 and 3 (Table 2) when increasing the distance from 8 to 9

the number of cliques grows from ≈ 7 · 104 to ≈ 17 · 104, while the time to find

the cliques increases from ≈ 2.4 to ≈ 5.9 seconds. The difference in number of

nodes and edges between these two graphs is 6 and 1744, respectively. On the

other hand, the complete product graph had 556 more nodes and 292038 more

edges than the graph with distance 9. From this it follows that the number

of cliques would be astronomical when considering the entire product graph.

Furthermore, even though the time it takes to do the BFS on each clique is

somewhat stable, the serious increase in the number of cliques results in a

significant increase in the overall runtime. In Table 2, we see that a distance

of 9 created 170176 cliques. If it takes 3.4 seconds on average to process 500

cliques, the algorithm would not terminate for at least 19 minutes for the first

two graphs. It is clear that this trend continues as the distance grows, so the

number of cliques found clearly plays a huge part in the runtime.

Comparing the data of Table 2 and 3 highlights the importance of the

sequence of the graphs. The number of cliques for Graph 1 and 2 is always

higher than for Graph 0 and 3, even with the product graph being smaller for

Graph 1 and 2. This illustrates the correlation between the number of cliques

and a “good” sequence.

Another aspect is that, as the number of cliques grows, so does the number

of potential branches to explore in the iterative approach. The more exten-

sions found between the first two input graphs, the wider the recursion tree

will become12. This will also have a natural impact on the runtime of the

algorithm as more branches must be explored. There is no clear way of de-

termining which graphs should be given as the first two graphs as that would

require knowledge about the number of pairwise maximal extensions between

the graphs beforehand, which is a circular argument.

The approach that we used to determine “good” sequences for the labelled

graphs (which was doable as the number of input graphs for each instance

12Recall that the depth of the search tree is exactly the number of input graphs, so this cannot be
optimized.
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we were given was limited to five) was to run the algorithm on the first two

input graphs and determine the number of cliques found in their product

graph, selecting the sequence with the least number of cliques. Even though

as described in Sect. 4.1 and illustrated in Fig. 12 several cliques may be

discarded, a large amount of cliques is still very likely to also result in a lot

of extensions, which we have now illustrated plays an important part in the

runtime of the algorithm.

Using this approach of “pairing up the first two graphs” with n graphs, one

would have to try out
(
n
2

)
= O(n2) different pairs of the first two input graphs.

This is a polynomial amount of pairs, but still not optimal if the reaction

network is large. This approach may be used for unlabelled graphs as well,

but the problem of running all possible pairs of input graphs still persists.

In general, one can see that the number of cliques impacts the runtime in

different ways. Firstly, if the number of found cliques is large, the time it takes

to run BFS on the induced subgraphs with each clique becomes significant.

Secondly, if a lot of cliques turn into extensions, the recursion tree becomes

wider. Finally, even finding the cliques is an issue as the product graph grows

in size. Everything thus comes down to the size of the product graph. This

underlines the importance of limiting the product graph as much as possible.

For most cases one will find that the smaller the product graph is, the better

runtime can be achieved. Although, as the comparison between Table 2 and

3 highlighted, it is not always the case.

Moving on to the discussion of the actual extension tests presented in Sect.

5.2.2 and in Appx. D, it is clear that the graphs with larger maximal extensions

have a higher runtime which, based on the above discussion, is expected. For

the instances whose maximal extension of the anchor grows as the max distance

from the anchor increases, the runtime increases exponentially (this can be seen

from Tables 18, 19, 22, and 23 from Appx. D). It is worth pointing out that

the maximal extension of the anchor has not been discovered for graphs with

a still-increasing extension as one cannot be sure that it would not increase

in size with the next max distance. However, for the graphs where the max

extension stops growing, the max extension has definitely been discovered. In

51



Maximum Common Subgraph

fact, for many of these graphs it was already discovered very early on, see Fig.

23. In the case where the max extension is discovered earlier, it would not

be necessary to consider the entire graph, or any further max distances. In

the instances in this thesis it is not relevant, since for those instances where

the MCS was discovered early, the subsequent tests ended quickly - it may be

relevant for later use, however.

6.2.3 Challenges introduced by the implementation

As can be seen from the presented results and the following discussion there

are several challenges in regard to solving this problem completely. For one, if

the exact anchor mapping is not known, it will require a lot of computations

to find the mapping that provides the best result. However, this may be an

issue that can be handled elsewhere.

Another challenge is handling instances with large graphs, such as GPDB,

where the runtime is significantly higher than for other instances. A proposed

solutions for this problem would be to update the anchor after each iteration

of increasing the max distance from the anchor. Meaning for the first itera-

tion the graphs would be limited to a max distance of one from the anchor,

then the anchor would be updated based on that result and the limit would

be expanded for the next iteration. It is believed that this would be an im-

provement compared to the current implementation, as there would be less

nodes and edges that would have to be considered as the graphs are limited

less and less. There are two main reasons for this hypothesis. The first is that

the edges extending the anchor would not need to be considered, as these are

already known at this point to be a part of the MCS. The second is the belief

that the neighbourhood, and therefore the size of the product graph, would

be positively affected by the larger anchor.

6.3 Comparison of both algorithms

Because of its misalignment with the practical aspect of this thesis, we have not

implemented a non-anchored version of the LMC algorithm. As a result, it is
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very difficult to compare it with McGregor’s algorithm in a meaningful sense.

Even if we had implemented a non-anchored LMC approach, the algorithm

would still find all maximal common subgraphs which McGregor wouldn’t -

this naturally implies that, on average, the LMC algorithm will spend more

time computing its solutions. This, however, is also what makes the LMC

algorithm much more suitable for global MCS for multiple decorated graphs.

As discussed, McGregor’s näıve approach does not work well in this regard, so

comparing them like this would not be realistic.

With that in mind, we are still able to compare the anchored version of

McGregor’s algorithm on our randomly generated undecorated graphs. Com-

paring the results from Fig. 21 and the results from Table 1 from Sect. 5.1 over

the same graphs, it appears that the implementation of McGregor’s algorithm

is significantly faster than the LMC implementation. The implementation of

McGregor’s algorithm for all five graphs has a runtime of ≈ 0.11 seconds,

while the fastest sequence for the LMC algorithm has a runtime of ≈ 7.8 sec-

onds. The LMC algorithm will, similarly to McGregor’s algorithm, have an

exponential increase in runtime as the input graphs grows in size, especially so

when dealing with unlabelled graphs. The reasoning comes from the previous

discussion of the impact that the size of the product graph (which cannot be

limited as much for undecorated graphs, see 4.1) has on the runtime. While

the implementation of McGregor’s algorithm does perform better for these

unlabelled graphs, it is important to keep in mind that the algorithm is not

directly usable for finding MCS between more than two labelled graphs, as

discussed in Sect. 6.1.2. Fortunately, the performance of the LMC algorithm

improves significantly when dealing with labelled graphs as a result of the

limitation of the product graph based on the node and edge labels. The fact

that the LMC algorithm does not perform as well for unlabelled graphs is not

as important because the application for anchor extensions (in molecules) will

always be working on decorated graphs.
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7 Conclusion

When it comes to finding the maximum common subgraph extension of more

than two labelled input graphs with an attached anchor, it was immediately

clear that a direct implementation of McGregor’s solution is unfeasible. Not

only because of the time complexity, but because McGregor’s approach simply

does not find all maximal extensions needed for more than two labelled graphs.

The LMC algorithm, however, clearly works for labelled graphs and even very

well for some instances. There are still instances where the runtime increases

to a point where the current implementation is unable to solve the problem in

reasonable time. We presented possible solutions to this problem in Sect. 6.2.3.

In relation to runtime, the implementation may not be feasible if the anchor

mapping is not given by the input graphs because computing the possible edge

mapping combinations quickly gets out of hand when the number of edges in

the anchor is large. On the other hand, should the edge mapping be given

as input, the modular product approach seems feasible for most of the tested

graphs and shows potential given an optimal implementation in a more efficient

programming language like C++. A peculiar observation that we made was the

fact that the sequence in which the input graphs were given had a remarkable

impact on the runtime of the iterative approach, and we brought up possible

explanations for this pattern. We also suggested a method for detecting a

good sequence of the first two input graphs rather quickly.

In conclusion, our prototype implementation shows that the problem of

finding the maximum common subgraph extensions of anchored molecules is

possible to solve for instances with three to four graphs when a “good” order

of graphs is given. With further optimiziations, it may be possible to increase

the number of graphs and still reach a reasonable runtime - reasonable being

relative to the fact that we expect users to run this algorithm once on each set

of graphs and save the results in a database for later use.
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Appendix A McGregor test data

This data set represents tests of the McGregor algorithm. The set of graphs

consists of three size classes - graphs with 5 nodes, 10 nodes and 20 nodes. The

number of edges varies through the graphs, though all graphs are connected.

First there are three figures plotting the run time of the tests. Afterwards 4

tables with the exact test results are displayed.
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G1 nodes/edges G2 nodes/edges Time (s) G1 nodes/edges G2 nodes/edges Time (s)
5/10 5/10 0.00046 5/10 5/8 0.00439
5/10 5/10 0.00038 5/10 5/10 0.00046
5/10 5/10 0.00037 5/10 5/10 0.00045
5/10 5/10 0.0004 5/10 5/9 0.00383
5/10 5/10 0.00037 5/10 5/9 0.00359
5/10 5/9 0.00393 5/10 5/7 0.00432
5/10 5/9 0.00384 5/10 5/8 0.00447
5/10 5/7 0.00454 5/10 5/10 0.00044
5/10 5/8 0.00446 5/10 5/9 0.0038
5/10 5/10 0.00045 5/10 5/9 0.00405
5/10 5/10 0.00044 5/10 5/7 0.00437
5/10 5/10 0.00037 5/10 5/8 0.00478
5/10 5/10 0.00055 5/10 5/9 0.00389
5/10 5/9 0.00363 5/10 5/9 0.00392
5/10 5/9 0.00407 5/10 5/7 0.00456
5/10 5/7 0.00449 5/10 5/8 0.0042
5/10 5/8 0.00446 5/9 5/9 0.00292
5/10 5/10 0.00045 5/9 5/7 0.00394
5/10 5/10 0.00045 5/9 5/8 0.00262
5/10 5/10 0.00036 5/9 5/7 0.00303
5/10 5/9 0.00361 5/9 5/8 0.00273
5/10 5/9 0.00394 5/7 5/8 0.0005
5/10 5/7 0.0046

Table 4: McGregor on graphs with 5 nodes
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G1 nodes/edges G2 nodes/edges Time (s) G1 nodes/edges G2 nodes/edges Time (s)
10/19 10/26 26.02879 10/25 10/28 25.30191
10/19 10/28 8.66097 10/25 10/29 28.79291
10/19 10/29 2.99406 10/25 10/25 103.38305
10/19 10/25 43.92559 10/26 10/28 52.28709
10/19 10/26 26.14767 10/26 10/29 37.37093
10/19 10/28 8.76622 10/26 10/25 77.08232
10/19 10/29 2.90403 10/26 10/28 52.37045
10/19 10/25 43.74742 10/26 10/29 37.48603
10/24 10/25 46.30886 10/26 10/25 77.10551
10/24 10/30 15.74858 10/28 10/29 timed out
10/24 10/28 8.9341 10/28 10/25 54.68681
10/24 10/19 64.26798 10/28 10/29 56.62926
10/24 10/26 35.31754 10/28 10/25 171.56876
10/24 10/28 14.51149 10/28 10/19 104.11856
10/24 10/29 8.87568 10/28 10/26 37.06321
10/24 10/25 40.17854 10/28 10/28 23.8604
10/25 10/24 95.22253 10/28 10/29 22.69586
10/25 10/25 52.25699 10/28 10/25 53.35599
10/25 10/30 12.11052 10/28 10/29 57.49223
10/25 10/28 52.41866 10/28 10/25 171.31848
10/25 10/19 117.1208 10/29 10/25 132.45440
10/25 10/26 49.09435 10/29 10/25 132.69938
10/25 10/28 37.37419 10/30 10/28 165.39116
10/25 10/29 14.23601 10/30 10/19 305.1515
10/25 10/25 38.67678 10/30 10/26 211.39996
10/25 10/30 12.74075 10/30 10/28 120.44785
10/25 10/28 17.22705 10/30 10/29 95.77612
10/25 10/19 104.88667 10/30 10/25 204.02821
10/25 10/26 28.89528

Table 5: McGregor on graphs with 10 nodes. Note timeout happens after 600 seconds.
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G1 nodes/edges G2 nodes/edges Time (s) G1 nodes/edges G2 nodes/edges Time (s)
5/10 10/25 0.27773 5/10 10/25 0.27383
5/10 10/24 0.08333 5/10 10/24 0.08361
5/10 10/25 0.1754 5/10 10/25 0.17436
5/10 10/30 0.00563 5/10 10/30 0.00559
5/10 10/28 0.10953 5/10 10/28 0.11018
5/10 10/19 0.17163 5/10 10/19 0.17128
5/10 10/26 0.10488 5/10 10/26 0.10567
5/10 10/28 0.00669 5/10 10/28 0.00692
5/10 10/29 0.00577 5/10 10/29 0.00577
5/10 10/25 0.11392 5/10 10/25 0.11056
5/10 10/25 0.27328 5/9 10/25 0.06942
5/10 10/24 0.08284 5/9 10/24 0.00357
5/10 10/25 0.17398 5/9 10/25 0.05761
5/10 10/30 0.0056 5/9 10/30 0.00618
5/10 10/28 0.10937 5/9 10/28 0.00269
5/10 10/19 0.16997 5/9 10/19 0.06523
5/10 10/26 0.10495 5/9 10/26 0.00574
5/10 10/28 0.00672 5/9 10/28 0.00592
5/10 10/29 0.00579 5/9 10/29 0.00301
5/10 10/25 0.11153 5/9 10/25 0.02393
5/10 10/25 0.27753 5/9 10/25 0.04535
5/10 10/24 0.08307 5/9 10/24 0.00342
5/10 10/25 0.17827 5/9 10/25 0.02375
5/10 10/30 0.00563 5/9 10/30 0.00462
5/10 10/28 0.10928 5/9 10/28 0.00288
5/10 10/19 0.17027 5/9 10/19 0.03928
5/10 10/26 0.10521 5/9 10/26 0.00668
5/10 10/28 0.00672 5/9 10/28 0.00556
5/10 10/29 0.00579 5/9 10/29 0.00496
5/10 10/25 0.11286 5/9 10/25 0.01537
5/10 10/25 0.27857 5/7 10/25 0.00283
5/10 10/24 0.08268 5/7 10/24 0.00306
5/10 10/25 0.17328 5/7 10/25 0.00263
5/10 10/30 0.00561 5/7 10/30 0.0027
5/10 10/28 0.11056 5/7 10/28 0.0021
5/10 10/19 0.18628 5/7 10/19 0.00629
5/10 10/26 0.10613 5/7 10/26 0.00265
5/10 10/28 0.00679 5/7 10/28 0.00307

Table 6: McGregor on graphs with 5 and 10 nodes.
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G1 nodes/edges G2 nodes/edges Time (s) G1 nodes/edges G2 nodes/edges Time (s)
5/10 10/29 0.00578 5/7 10/29 0.0023
5/10 10/25 0.11207 5/7 10/25 0.00357
5/10 10/25 0.27437 5/8 10/25 0.01194
5/10 10/24 0.08266 5/8 10/24 0.00348
5/10 10/25 0.17937 5/8 10/25 0.00251
5/10 10/30 0.00561 5/8 10/30 0.00334
5/10 10/28 0.10973 5/8 10/28 0.00241
5/10 10/19 0.17006 5/8 10/19 0.03271
5/10 10/26 0.10499 5/8 10/26 0.00422
5/10 10/28 0.00672 5/8 10/28 0.00367
5/10 10/29 0.00579 5/8 10/29 0.00239
5/10 10/25 0.12118 5/8 10/25 0.00449

Table 7: McGregor on graphs with 5 and 10 nodes continued.
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G1 nodes/edges G2 nodes/edges Time (s) G1 nodes/edges G2 nodes/edges Time (s)
5/10 20/47 9.49598 5/10 20/47 9.48423
5/10 20/42 3.30214 5/10 20/42 3.29642
5/10 20/36 4.8306 5/10 20/36 4.82945
5/10 20/42 2.39904 5/10 20/42 2.39215
5/10 20/40 3.16369 5/10 20/40 3.15848
5/10 20/55 3.3082 5/10 20/55 3.29496
5/10 20/52 2.82093 5/10 20/52 2.81965
5/10 20/48 2.49535 5/10 20/48 2.4935
5/10 20/42 1.71912 5/10 20/42 1.72669
5/10 20/49 4.06498 5/10 20/49 4.0652
5/10 20/47 9.57288 5/9 20/47 3.87927
5/10 20/42 3.47059 5/9 20/42 0.96943
5/10 20/36 4.82355 5/9 20/36 1.69311
5/10 20/42 2.43258 5/9 20/42 0.58358
5/10 20/40 3.15565 5/9 20/40 1.35845
5/10 20/55 3.29954 5/9 20/55 0.62026
5/10 20/52 2.82496 5/9 20/52 0.49159
5/10 20/48 2.4946 5/9 20/48 0.55511
5/10 20/42 1.7202 5/9 20/42 0.32515
5/10 20/49 4.10385 5/9 20/49 1.06441
5/10 20/47 9.50666 5/9 20/47 1.93818
5/10 20/42 3.29232 5/9 20/42 0.73771
5/10 20/36 4.82993 5/9 20/36 1.0171
5/10 20/42 2.39494 5/9 20/42 0.38676
5/10 20/40 3.15848 5/9 20/40 0.59216
5/10 20/55 3.29907 5/9 20/55 0.41914
5/10 20/52 2.82155 5/9 20/52 0.36576
5/10 20/48 2.49394 5/9 20/48 0.49767
5/10 20/42 1.71828 5/9 20/42 0.27133
5/10 20/49 4.05254 5/9 20/49 0.67223
5/10 20/47 9.50277 5/7 20/47 0.08752
5/10 20/42 3.29923 5/7 20/42 0.01847
5/10 20/36 4.82647 5/7 20/36 0.05464
5/10 20/42 2.3961 5/7 20/42 0.03304
5/10 20/40 3.17261 5/7 20/40 0.03845
5/10 20/55 3.29973 5/7 20/55 0.0182
5/10 20/52 3.09788 5/7 20/52 0.01167
5/10 20/48 2.5741 5/7 20/48 0.01672

Table 8: McGregor on graphs with 5 and 20 nodes.
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G1 nodes/edges G2 nodes/edges Time (s) G1 nodes/edges G2 nodes/edges Time (s)
5/10 20/42 1.72449 5/7 20/42 0.02036
5/10 20/49 4.0515 5/7 20/49 0.01992
5/10 20/47 9.47856 5/8 20/47 0.49435
5/10 20/42 3.46557 5/8 20/42 0.16805
5/10 20/36 4.83699 5/8 20/36 0.25297
5/10 20/42 2.39967 5/8 20/42 0.06693
5/10 20/40 3.15988 5/8 20/40 0.41064
5/10 20/55 3.3011 5/8 20/55 0.0842
5/10 20/52 2.83458 5/8 20/52 0.06394
5/10 20/48 2.50464 5/8 20/48 0.08155
5/10 20/42 1.72719 5/8 20/42 0.04201
5/10 20/49 4.07225 5/8 20/49 0.41861

Table 9: McGregor on graphs with 5 and 20 nodes continued.
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Appendix B Unlabelled graphs

The graphs presented here are five unlabelled graphs with anchored edges.

Each anchor consists of three edges. All figures illustrate the randomly gen-

erated graphs. The numbers in the vertices are not labels, they are just used

indices that separate the vertices.
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Appendix C Unlabelled graphs test data

The first figure illustrates the runtime of the algorithm when all five graphs are

given to the iterative approach but in different order. The remaining tables

represent the resulting test data for 2, 3, 4, and all 5 of the randomly generated

graphs.
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graph seq time (s)
0 1 1.8
0 2 1.1
0 3 0.84
0 4 0.53
1 0 1.96
1 2 0.61
1 3 0.59
1 4 0.17
2 0 1.11
2 1 0.56
2 3 1.11
2 4 0.37
3 0 0.87
3 1 0.56
3 2 0.92
3 4 0.47
4 0 0.56
4 1 0.17
4 2 0.37
4 3 0.49

Table 10: The runtime of all permu-
tations with two of the five unlabelled
graphs.

graph seq time (s) graph seq time (s)
0 1 2 14.45 2 1 4 1.78
0 1 3 7.13 2 3 0 4.08
0 1 4 6.29 2 3 1 3.71
0 2 1 7.78 2 3 4 2.98
0 2 3 4.63 2 4 0 3.57
0 2 4 4.47 2 4 1 2.39
0 3 1 4.56 2 4 3 2.36
0 3 2 6.84 3 0 1 4.56
0 3 4 3.64 3 0 2 6.87
0 4 1 2.81 3 0 4 3.65
0 4 2 4.08 3 1 0 2.92
0 4 3 2.33 3 1 2 4.21
1 0 2 14.74 3 1 4 1.73
1 0 3 7.47 3 2 0 4.22
1 0 4 6.46 3 2 1 3.6
1 2 0 4.31 3 2 4 2.83
1 2 3 2.84 3 4 0 7.99
1 2 4 1.84 3 4 1 4.25
1 3 0 3.3 3 4 2 8.43
1 3 2 4.11 4 0 1 2.71
1 3 4 1.78 4 0 2 4.06
1 4 0 4.75 4 0 3 2.56
1 4 2 4.0 4 1 0 4.82
1 4 3 2.34 4 1 2 4.02
2 0 1 7.84 4 1 3 2.32
2 0 3 4.44 4 2 0 3.29
2 0 4 4.38 4 2 1 2.18
2 1 0 4.15 4 2 3 2.62
2 1 3 2.77 4 3 0 8.05
4 3 2 8.39 4 3 1 4.27

Table 11: The runtime of all permuta-
tions with three of the five unlabelled
graphs.

67



Maximum Common Subgraph

graph seq time (s) graph seq time (s) graph seq time (s) graph seq time (s)
0 1 2 3 31.86 3 2 4 1 12.28 1 2 0 4 7.08 2 3 1 0 7.62
0 1 2 4 30.99 3 4 0 1 13.47 1 2 3 0 6.56 2 3 1 4 7.48
0 1 3 2 22.52 3 4 0 2 17.75 1 2 3 4 6.85 2 3 4 0 13.12
0 1 3 4 14.82 3 4 1 0 16.12 1 2 4 0 12.74 2 3 4 1 12.29
0 1 4 2 59.19 3 4 1 2 20.91 1 2 4 3 8.35 2 4 0 1 7.58
0 1 4 3 33.11 3 4 2 0 23.04 1 3 0 2 6.58 2 4 0 3 5.65
0 2 1 3 14.51 3 4 2 1 20.12 1 3 0 4 4.98 2 4 1 0 11.71
0 2 1 4 15.45 4 0 1 2 14.18 1 3 2 0 7.81 2 4 1 3 7.91
0 2 3 1 11.26 4 0 1 3 7.38 1 3 2 4 7.23 2 4 3 0 8.39
0 2 3 4 10.09 4 0 2 1 10.39 1 3 4 0 10.51 2 4 3 1 8.51
0 2 4 1 16.83 4 0 2 3 8.86 1 3 4 2 12.55 3 0 1 2 12.5
0 2 4 3 12.95 4 0 3 1 5.88 1 4 0 2 16.25 3 0 1 4 8.4
0 3 1 2 12.49 4 0 3 2 8.79 1 4 0 3 9.38 3 0 2 1 12.1
0 3 1 4 8.56 4 1 0 2 16.26 1 4 2 0 11.65 3 0 2 4 11.22
0 3 2 1 12.32 4 1 0 3 9.23 1 4 2 3 10.01 3 0 4 1 10.61
0 3 2 4 11.5 4 1 2 0 12.35 1 4 3 0 11.31 3 0 4 2 16.05
0 3 4 1 10.71 4 1 2 3 10.05 1 4 3 2 15.65 3 1 0 2 5.56
0 3 4 2 16.15 4 1 3 0 10.82 2 0 1 3 14.27 3 1 0 4 4.4
0 4 1 2 14.58 4 1 3 2 15.72 2 0 1 4 15.36 3 1 2 0 8.09
0 4 1 3 7.02 4 2 0 1 6.58 2 0 3 1 10.56 3 1 2 4 7.26
0 4 2 1 10.6 4 2 0 3 6.11 2 0 3 4 9.45 3 1 4 0 9.01
0 4 2 3 8.42 4 2 1 0 9.07 2 0 4 1 16.83 3 1 4 2 12.92
0 4 3 1 5.27 4 2 1 3 7.85 2 0 4 3 12.38 3 2 0 1 6.9
0 4 3 2 7.94 4 2 3 0 11.29 2 1 0 3 6.27 3 2 0 4 6.4
1 0 2 3 32.56 4 2 3 1 10.1 2 1 0 4 6.78 3 2 1 0 7.87
1 0 2 4 31.26 4 3 0 1 13.54 2 1 3 0 6.14 3 2 1 4 7.47
1 0 3 2 23.54 4 3 0 2 17.51 2 1 3 4 6.48 3 2 4 0 13.44
1 0 3 4 15.5 4 3 1 0 15.89 2 1 4 0 12.72 1 2 0 3 6.64
1 0 4 2 59.84 4 3 1 2 21.37 2 1 4 3 8.2 4 3 2 1 21.08
1 0 4 3 34.37 4 3 2 0 23.45 2 3 0 1 6.47 2 3 0 4 6.08

Table 12: The runtime of all permutations with four of the five unlabelled graphs.
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graph seq time (s) graph seq time (s) graph seq time (s)
0 1 2 3 4 51.24 2 3 0 1 4 8.73 1 4 0 2 3 25.67
0 1 2 4 3 80.86 2 3 0 4 1 9.87 1 4 0 3 2 19.97
0 1 3 2 4 35.37 2 3 1 0 4 9.45 1 4 2 0 3 14.91
0 1 3 4 2 47.89 2 3 1 4 0 15.48 1 4 2 3 0 16.11
0 1 4 2 3 112.29 2 3 4 0 1 18.81 1 4 3 0 2 21.11
0 1 4 3 2 92.49 2 3 4 1 0 24.48 1 4 3 2 0 27.35
0 2 1 3 4 21.38 2 4 0 1 3 11.37 2 0 1 3 4 21.1
0 2 1 4 3 34.38 2 4 0 3 1 8.23 2 0 1 4 3 33.0
0 2 3 1 4 17.73 2 4 1 0 3 15.55 2 0 3 1 4 16.29
0 2 3 4 1 21.26 2 4 1 3 0 14.18 2 0 3 4 1 19.45
0 2 4 1 3 31.11 2 4 3 0 1 11.93 2 0 4 1 3 30.87
0 2 4 3 1 24.72 2 4 3 1 0 16.35 2 0 4 3 1 22.35
0 3 1 2 4 19.71 3 0 1 2 4 19.69 2 1 0 3 4 8.21
0 3 1 4 2 26.6 3 0 1 4 2 25.95 2 1 0 4 3 12.67
0 3 2 1 4 17.51 3 0 2 1 4 17.51 2 1 3 0 4 7.77
0 3 2 4 1 20.65 3 0 2 4 1 20.6 2 1 3 4 0 13.41
0 3 4 1 2 25.1 3 0 4 1 2 25.04 2 1 4 0 3 18.6
0 3 4 2 1 27.39 3 0 4 2 1 27.38 2 1 4 3 0 17.78
0 4 1 2 3 23.84 3 1 0 2 4 7.59 4 1 0 2 3 26.33
0 4 1 3 2 15.63 3 1 0 4 2 9.34 4 1 0 3 2 19.6
0 4 2 1 3 18.35 3 1 2 0 4 9.78 4 1 2 0 3 16.37
0 4 2 3 1 13.92 3 1 2 4 0 14.5 4 1 2 3 0 17.09
0 4 3 1 2 11.32 3 1 4 0 2 16.09 4 1 3 0 2 19.97
0 4 3 2 1 12.59 3 1 4 2 0 22.87 4 1 3 2 0 26.21
1 0 2 3 4 52.36 3 2 0 1 4 9.34 4 2 0 1 3 11.03
1 0 2 4 3 84.5 3 2 0 4 1 10.55 4 2 0 3 1 9.82
1 0 3 2 4 36.79 3 2 1 0 4 9.97 4 2 1 0 3 13.1
1 0 3 4 2 49.67 3 2 1 4 0 16.69 4 2 1 3 0 15.61
1 0 4 2 3 114.75 3 2 4 0 1 19.97 4 2 3 0 1 16.26
1 0 4 3 2 97.18 3 2 4 1 0 26.59 4 2 3 1 0 20.33
1 2 0 3 4 9.34 3 4 0 1 2 25.5 4 3 0 1 2 24.73
1 2 0 4 3 13.15 3 4 0 2 1 25.64 4 3 0 2 1 25.55
1 2 3 0 4 8.59 3 4 1 0 2 27.79 4 3 1 0 2 27.81
1 2 3 4 0 14.38 3 4 1 2 0 37.24 4 3 1 2 0 38.2
1 2 4 0 3 17.23 3 4 2 0 1 31.1 4 3 2 0 1 32.0
1 2 4 3 0 16.62 3 4 2 1 0 37.45 4 3 2 1 0 37.42
1 3 0 2 4 9.02 4 0 1 2 3 24.28 4 0 3 1 2 12.66
1 3 0 4 2 11.44 4 0 1 3 2 17.19 4 0 3 2 1 14.15
1 3 2 0 4 9.49 4 0 2 1 3 18.81 1 3 4 2 0 24.21
1 3 2 4 0 14.37 4 0 2 3 1 15.19 1 3 4 0 2 19.12

Table 13: The runtime of all permutations with the five unlabelled graphs.
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Appendix D Enzymatic reaction graphs test data

This data set represents tests of the clique algorithm on Graphs modelling

molecules supplied with anchored Edges, atom and bond labels on vertices

and edges respectively. For each test instance there is a figure containing the

development of the runtime compared to the max distance from the anchor,

as well as the corresponding table of data.

Additionally, the appendix includes tables containing descriptions of the

graphs in all instances.

D.1 Graph results
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Max distance Max extension Time(s)
infinity 5 0.75766
1 5 0.00397
2 5 0.00543
3 5 0.00761
4 5 0.0102
5 5 0.01622
6 5 0.03166
7 5 0.06407
8 5 0.11616
9 5 0.19599

Table 14: Acetate Kinase Backward (AKB)

Acetate Kinase Forward (AKF)
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Max distance Max extension Time(s)
infinity 5 0.73113
1 5 0.00409
2 5 0.00574
3 5 0.00744
4 5 0.01055
5 5 0.01613
6 5 0.03244
7 5 0.06352
8 5 0.11453
9 5 0.19192

Table 15: Acetate Kinase Forward (AKF)

Aconitase Half-Reaction A Citrate Hydro-lyase Backward (AHACHB)
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Max distance Max extension Time(s)
infinity 4 0.00491
1 2 0.00245
2 4 0.00498
3 4 0.0052
4 4 0.0049
5 4 0.00506
6 4 0.0054
7 4 0.00492
8 4 0.00545
9 4 0.0054

Table 16: Aconitase Half-Reaction A Citrate Hydro-lyase Backward (AHACHB)

Aconitase Half-Reaction A Citrate Hydro-lyase Forward (AHACHF)
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Max distance Max extension Time(s)
infinity 4 0.00509
1 2 0.00264
2 4 0.00492
3 4 0.00515
4 4 0.00497
5 4 0.00536
6 4 0.00492
7 4 0.00503
8 4 0.00512
9 4 0.00498

Table 17: Aconitase Half-Reaction A Citrate Hydro-lyase Forward (AHACHF)

Alcohol Dehydrogenase Ethanol Backward (ADEB)
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Max distance Max extension Time(s)
infinity - timed out after 1800 seconds
1 7 0.00798
2 14 0.05179
3 19 0.33891
4 24 4.32864
5 27 38.29215
6 30 439.06321
7 31 528.13756
8 34 1235.89867
9 - timed out after 1800 seconds

Table 18: Alcohol Dehydrogenase Ethanol Backward (ADEB)

Alcohol Dehydrogenase Ethanol Forward (ADEF)
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Max distance Max extension Time(s)
infinity - timed out after 1800 seconds
1 7 0.02538
2 13 0.07016
3 18 0.48703
4 23 5.34438
5 26 63.95696
6 29 720.00129
7 30 846.17031
8 - timed out after 1800 seconds
9 - timed out after 1800 seconds

Table 19: Alcohol Dehydrogenase Ethanol Forward (ADEF)

Fructose Bisphosphatase (FB)
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Max distance Max extension Time(s)
infinity 6 0.1402
1 3 0.00337
2 5 0.00779
3 6 0.01671
4 6 0.02347
5 6 0.03278
6 6 0.04591
7 6 0.06275
8 6 0.06362
9 6 0.06516

Table 20: Fructose Bisphosphatase (FB)

Generic Phosphatase (GP)
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Max distance Max extension Time(s)
infinity 6 0.07348
1 3 0.00268
2 5 0.00759
3 6 0.0174
4 6 0.02689
5 6 0.03326
6 6 0.04655
7 6 0.06376
8 6 0.06438
9 6 0.06542

Table 21: Generic Phosphatase (GP)

Glucose 6 Phosphate Dehydrogenase Backward (GPDB)
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Max distance Max extension Time(s)
infinity - timed out after 1800 seconds
1 7 0.01695
2 14 0.05962
3 19 0.34715
4 24 4.43406
5 27 37.96491
6 30 440.50666
7 31 530.58584
8 34 1247.38214
9 - timed out after 1800 seconds

Table 22: Glucose 6 Phosphate Dehydrogenase Backward (GPDB)

Glucose 6 Phosphate Dehydrogenase Forward (GPDF)
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Max distance Max extension Time(s)
infinity - timed out after 1800 seconds
1 7 0.01225
2 13 0.06343
3 18 0.4396
4 23 5.2616
5 26 67.71842
6 29 759.92566
7 30 882.70626
8 - timed out after 1800 seconds
9 - timed out after 1800 seconds

Table 23: Glucose 6 Phosphate Dehydrogenase Forward (GPDF)

Glucose 6 Phosphate Isomerase Forward (GPIF)
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Max distance Max extension Time(s)
infinity 1 0.00263
1 1 0.00211
2 1 0.00232
3 1 0.0026
4 1 0.0028
5 1 0.00267
6 1 0.00302
7 1 0.00275
8 1 0.0027
9 1 0.00268

Table 24: Glucose 6 Phosphate Isomerase
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D.2 Graph information

The following tables for each test instance provides information regarding each

of the graphs in the test instances. For each graph the number of nodes and

edges, as well as the left hand side and the right hand side of the reaction is

given. Lastly, a table over the “good” sequence chosen for each test instance.

Graph # Nodes # Edges Reaction
0 50 52 adp → ac + atp
1 78 83 amp + atp → 2 adp
2 78 83 2 adp → atp + amp
3 58 60 adp + 13dpg → atp + 3pg

Table 25: Acetate Kinase Backward (AKB)

Graph # Nodes # Edges Reaction
0 50 52 ac + atp → actp adp
1 78 83 atp + amp → 2 adp
2 78 83 2 adp → atp + amp
3 58 60 atp + 3pg → 13dpg + adp

Table 26: Acetate Kinase Forward (AKF)

Graph # Nodes # Edges Reaction
0 18 18 acon-C + h2o → cit
1 18 18 acon-C + h2o → icit
2 15 15 pep + h2o → 2pg
3 13 13 fum + h2o → mal-L

Table 27: Aconitase Half-Reaction A Citrate Hydro-lyase Backward (AHACHB)

Graph # Nodes # Edges Reaction
0 18 18 cit → acon-C + h2o
1 18 18 icit → acon-C + h2o
2 15 15 2pg → pep + h2o
3 13 13 mal-L → fum + h2o

Table 28: Aconitase Half-Reaction A Citrate Hydro-lyase Forward (AHACHF)
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Graph # Nodes # Edges Reaction
0 79 83 nadh + acald + h → nad + etoh
1 81 85 nadh + pyr + h → nad + lac-D
2 83 87 nadh + oaa + h → nad + mal-L

Table 29: Alcohol Dehydrogenase Ethanol Backward (ADEB)

Graph # Nodes # Edges Reaction
0 79 83 nad + etoh → nadh + acald + h
1 81 85 nad + lac-D → nadh + pyr + h
2 83 87 nad + mal-L → nadh + oaa + h
3 89 93 nad + 4pe → nadh + pdxb r + h

Table 30: Alcohol Dehydrogenase Ethanol Forward (ADEF)

Graph # Nodes # Edges Reaction
0 33 34 fdp + h2o → f6p + pi
1 144 154 nadph + nad → nadh + nadp
2 15 16 2pg → 3pg
3 15 16 3pg → 2pg

Table 31: Fructose Bisphosphatase (FB)

Graph # Nodes # Edges Reaction
0 33 34 h2o + fdp → pi + f6p
1 144 154 nad + nadph → nadh + nadp
2 15 16 2pg → 3pg
3 15 16 3pg → 2pg

Table 32: Generic Phosphatase (GP)

Graph # Nodes # Edges Reaction
0 79 83 nadh + acald + h → nad + etoh
1 81 85 nadh + pyr + h → nad + lac-D
2 83 87 nadh + oaa + h → nad + mal-L

Table 33: Glucose 6 Phosphate Dehydrogenase Backward (GPDB)

Graph # Nodes # Edges Reaction
0 79 83 nad + etoh → nadh + acald + h
1 81 85 nad + lac-D → nadh + pyr + h
2 83 87 nad + mal-L → nadh + oaa + h
3 89 93 nad + 4pe → nadh + pdxb r + h

Table 34: Glucose 6 Phosphate Dehydrogenase Forward (GPDF)
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Graph # Nodes # Edges Reaction
0 15 16 2pg → 3pg
1 15 16 3pg → 2pg
2 15 16 dhap → g3p
3 15 16 g3p → dhap

Table 35: Glucose 6 Phosphate Isomerase Forward (GPIF)

Instance Sequence used
AKB 2 1 0 3
AKF 2 1 0 3
AHACHB 2 1 0 3
AHACHF 2 1 0 3
ADEB 0 2 1
ADEF 0 3 1 2
FB 0 2 1 3
GP 0 2 1 3
GPIF 0 1 2 3
GPDB 0 2 1
GPDF 0 3 2 1
PD —–

Table 36: The “good” sequence for each of the test instances. The last test instance Phos-
phogluconate Dehydrogenase (PD) has not been tested, as we were unable to finish
computing anchors.
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Appendix E Aconitase Half-Reaction A Citrate Hydro-

lyase Backward illustration

This appendix contains the four graphs contained in AHACHB along with

their anchor and their found maximum extension of four edges. The anchored

edges in each graph are depicted in orange, and the found extension is depicted

in pink. Parallel edges where one of the bonds is dashed illustrates the change

from a double bond to a single bond.
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